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For reaction-diffusion processes with at most bimolecular reactants, we derive well-behaved, numeri-
cally tractable, exact Langevin equations that govern a stochastic variable related to the response field in
field theory. Using duality relations, we show how the particle number and other quantities of interest can
be computed. Our work clarifies long-standing conceptual issues encountered in field-theoretical
approaches and paves the way for systematic numerical and theoretical analyses of reaction-diffusion
problems.
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An important challenge in many areas of science is to
reliably derive Langevin equations (LEs) governing the
dynamics of relevant degrees of freedom at mesoscopic or
coarse-grained scales. LEs are not only useful numerically,
saving one from dealing with unessential details, but
they also constitute the usual starting point for analytic
approaches such as renormalization group analyses [1]. Not
surprisingly, there is no systematic method to derive LEs
from first principles, given that they are supposed to resum
the complicated effects of different “forces” acting on the
system at microscopic scales. As a matter of fact, LEs are
often built from the underlying “mean-field” deterministic
dynamics to which a noise term is added (see, e.g., [2,3]).
Several attempts to go beyond such a heuristic approach
have been made. Most use more or less sophisticated
approximations to derive an equation for a “density” field
[4–7]. The most popular ones are van Kampen’s system
size expansion [8] and Gillespie’s projection method [9]
(equivalent to a second-order truncation of the Kramers-
Moyal equation), both of which rely on the presence of
large numbers of particles. Although powerful within their
range of validity, these approximations fail for spatially
extended systems displaying empty or sparsely populated
regions.
Reaction-diffusion (RD) processes, which represent a

wealth of phenomena in physics, chemistry, biology,
population genetics, and even linguistics [10–13], play a
particular role in this context in two respects: (i) they often
exhibit empty domains and transition to absorbing states
with strong fluctuations, and thus stand out of the validity
range of popular methods to write LEs; (ii) their micro-
scopic dynamics can be described exactly by a master

equation, an object that can only be used directly for small
systems but constitutes the starting point of field-theoretical
approaches with which, in turn, LEs can be formally
associated. This procedure, using the Doi-Peliti formalism
[14–20], does not require large numbers of particles, and it
would then appear that reliable LEs can be written for RD
processes even in sparse regimes. However, as we show
below, the LEs obtained often appear “paradoxical,” the
fields they govern may be difficult to interpret, and, worse,
the path followed to derive them suffers from fundamental
difficulties. Indeed, it often involves illegitimate steps, a
consequence of which can be the advent of imaginary noise
in equations supposed to describe real fields [21,22].
A famous example of these inconsistencies is the simple,
yet puzzling, pure annihilation case where particles from a
single species diffuse and annihilate by pair upon encounter
[19,20,22–25].
In this Letter, changing perspective, we present a

systematic and exact derivation of LEs for RD processes
that does not rely on field-theoretic tools, but rather stems
directly from the master equation. These LEs do not
govern a density field, but, using duality considerations,
a somewhat standard technique for stochastic processes and
interacting particle systems [26–33], we show how the
particle number and all its moments and correlations are
computable from them. We also show how to relate our LEs
to field-theoretical approaches, resolving all previous para-
doxes, and clarifying the meaning of the stochastic variable
they govern. On top of the resolution of these long-standing
conceptual issues, we show that this approach provides
us with new practical and theoretical tools for computing
observables of RD processes.
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We consider the class of single-species RD processes

involving all possible reactions of the form A→
αp
pA (p

arbitrary, combined with any mixture of pairwise annihi-

lation-coagulation 2A→
βp∅ and/or A (with respective rates

β0, β1). This set of reactions—comprising at most bimo-
lecular reactants—already encompasses most of the physi-
cally interesting cases. For the sake of notational simplicity,
we deal with the zero-dimensional case in what follows,
because by considering diffusion as the nearest-neighbor

hopping reaction A∅↔D ∅A, the generalization to d dimen-
sions is straightforward (see [34] for a detailed treatment).
We define NðtÞ as the stochastic variable representing the
number of particles in the system at time t. The master
equation that describes the evolution of the probabilities
PnðtÞ≡ Prob½NðtÞ ¼ n� reads

∂tPnðtÞ ¼
X
m

LnmPmðtÞ; ð1Þ

where the elements of the rate transition matrix L
are Lnm ¼ P

pαpmðδnþ1−p;m − δm;nÞ þ
P

qβqmðm − 1Þ
ðδnþ2−q;m − δm;nÞ. Introducing the probability-generating
function Gðz; tÞ ¼ P∞

n¼0 z
nPnðtÞ, Eq. (1) can be subsumed

as an evolution equation for Gðz; tÞ,

∂tGðz; tÞ ¼ LzGðz; tÞ ð2Þ
which involves a second-order evolution operator Lz ¼
Lðz; ∂zÞ ¼ AðzÞ∂z þ BðzÞ∂2

z , determined by the reaction
rates through

AðzÞ ¼
X
p

αpðzp − zÞ; BðzÞ ¼
X
q

βqðzq − z2Þ: ð3Þ

Note that for the reactions we deal with, the coefficient of
the second derivative reduces to a second-order polynomial
in z,

BðzÞ¼ ðβ0þβ1Þðz−lÞð1− zÞ; l≡−β0=ðβ0þβ1Þ: ð4Þ

The consideration of G—a well-defined analytic function
for z in the complex unit disk jzj ≤ 1—is a somewhat
standard tool [35]. Besides the probability normalization
encoded through Gðz ¼ 1; tÞ ¼ 1, derivatives of Gðz; tÞ
with respect to z evaluated at z ¼ 1 give access (in
principle) to the (factorial) moments of the number of
particles. Some recent works in the literature have also
shown how one can extract rare-events statistics from the
behavior of Gðz; tÞ near z ¼ 0 [36].
The second-order operator Lz governing the evolution of

G is not a Fokker-Planck operator that could be associated
with the number of particles NðtÞ. However, L†

z , the
Hermitian conjugate of Lz, is the Fokker-Planck operator
for a stochastic variable ZðtÞ obeying the Itō (prepoint) LE,

_ZðtÞ ¼ A(ZðtÞ)þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2B(ZðtÞ)

p
ηðtÞ; ð5Þ

where ηðtÞ is a zero-mean unit variance Gaussian white
noise. Crucially, due to the form of the drift and diffusion
functions AðzÞ, BðzÞ given in Eqs. (3) and (4), the
stochastic variable ZðtÞ always remains (if initially so)
in the bounded real interval ½l; 1� where ffiffiffiffiffiffiffiffiffi

BðzÞp
≥ 0. We

show in the following that the determination of the statistics
of ZðtÞ through the knowledge of G suffices to extract all
the physics of interest for the original RD process.
With its multiplicative noise and its two square-root

barriers at l and 1, Eq. (5) resembles phenomenological
LEs usually considered for nonequilibrium phase transi-
tions with symmetric absorbing states [37–43]. However,
the LE (5) is exact and ZðtÞ is not a density: we show below
that ZðtÞ is in fact closely related to the (time-reversed)
response field used in field theory and explain how useful
quantities can be computed from Eq. (5).
The evolution of ZðtÞ stops when it has reached the

absorbing barrier located at 1 (whose fixed location can be
traced back to the probability conservation). This implies
the existence of a delta-peak term at z ¼ 1 in the probability
distribution pðz; tÞ of ZðtÞ and, depending on the values of
the αp’s, whenever (the otherwise always non-negative)
AðlÞ vanishes, a second delta peak appears at z ¼ l. Thus,
the general form of pðz; tÞ reads

pðz; tÞ ¼ pcðz; tÞ þ q1ðtÞδð1 − zÞ þ qlðtÞδðl − zÞ; ð6Þ

where pcðz; tÞ is the continuous part of the distribution and
q1, ql the weights at the boundaries. Note, finally, that
efficient and accurate methods dealing properly with
multiplicative square-root noise exist [37,38,44–46], so
that LE (5) can be used numerically (even in the spatially
extended case), and thereby the obtained statistics of ZðtÞ
faithfully reconstructs Eq. (6).
We now derive the fundamental relation that allows us to

compute quantities for the original RD process. Using Itō
calculus in Eq. (5) [30,35] or, alternatively, its associated
Fokker-Planck equation, one can show that

∂thZðtÞniLE ¼
X
m

ðLTÞnmhZðtÞmiLE; ð7Þ

where LT is the transpose matrix of L [see Eq. (1)], and
h·iLE denotes averaging over the noise ηðtÞ of Eq. (5), that
is, with the distribution pðz; tÞ. Combining Eqs. (1) and (7),
it is now easy to show that, for any fixed time t, the quantityP

nPnðt − sÞhZðsÞniLE is independent of s (0 ≤ s ≤ t).
Evaluating it at s ¼ t and s ¼ 0, we find the exact duality
relation [47]

Z
1

l
dz

X∞
n¼0

pðz;tÞPnð0Þzn ¼
Z

1

l
dz

X∞
n¼0

pðz;0ÞPnðtÞzn; ð8Þ
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which also reads hhZðtÞNð0ÞiLEiRD ¼ hhZð0ÞNðtÞiLEiRD,
where h·iRD has to be understood as an averaging over
the RD process. (This relation generalizes an analogous one
derived by Doering et al. for the reversible coagulation-
decoagulation process A⇌2A [30]).
Using Eq. (8) and properly choosing initial conditions of

the LE, one easily computes quantities of the RD process
such as the survival probability and the moments of the
probability distribution PnðtÞ. The survival probability

PðmÞ
survðtÞ is defined as the probability that, starting at

t ¼ 0 with m > 0 particles, at least one particle survives

at time t: PðmÞ
survðtÞ ¼ 1 − P0ðtÞ. Using Eq. (8) with

pðz; 0Þ ¼ δðzÞ and Pnð0Þ ¼ δmn, we obtain

1 − PðmÞ
survðtÞ ¼

Z
1

l
dzpðz; tj0; 0Þzm ¼ hZðtÞmiLE; ð9Þ

where pðz; tjz0; 0Þ is the conditional transition probability
of the LE with pðz; t ¼ 0Þ ¼ δðz − z0Þ as the initial
condition and the mth-order moment is a readily measur-
able quantity in a LE simulation. Similarly, the moments of
the RD process can be derived fromGðz; tÞ using pðz; 0Þ ¼
δðz − z0Þ as the initial condition; Eq. (8) yields [48]

Gðz0; tÞ ¼
Z

1

l
dz

X∞
n¼0

pðz; tjz0; 0ÞPnð0Þzn: ð10Þ

Differentiating Gðz0; tÞ with respect to z0 and evaluating
it at z0 ¼ 1 yields the (factorial) moments of the RD
process. For instance, the average particle number reads

hNðtÞi ¼ ∂z0

Z
1

l
dz
X
n

pðz; tjz0; 0ÞPnð0Þznjz0¼1: ð11Þ

All formulas above can be easily generalized to the
spatially extended case in the presence of diffusion. For
instance, putting m particles at one site i and 0 elsewhere in
the RD process and choosing Zjð0Þ ¼ 0 for all sites j for the

LE, Eq. (9) is replaced by Pðm;iÞ
surv ðtÞ ¼ 1 − hZiðtÞmiLE [49].

We now make contact with the field-theoretic
approaches alluded to above. In addition to clarifying
the situation there, this elucidates the physical meaning
of the stochastic variable Z governing Eq. (5) and also
reveals how correlation functions at different times and
response functions can be calculated within our framework.
We first recall the main features of the Doi-Peliti

formalism from which follow the field theories associated
with RD processes (see, e.g., [12,15,17,18]). A (state)
vector jPðtÞi is associated with the set of probabilities
fPnðtÞg. This vector belongs to a Hilbert space spanned
by the “occupation number” vectors fjnig and reads
jPðtÞi ¼ P∞

n¼0 PnðtÞjni. The vector jni is an eigenvector
with eigenvalue n of the “number” operator N̂ ¼ a†a
where a and a† are annihilation and creation operators
satisfying ½a; a†� ¼ 1, aj0i ¼ 0, ajni ¼ njn − 1i, and

a†jni ¼ jnþ 1i. The scalar product is chosen such that
hmjni ¼ n!δmn and a† is the Hermitian conjugate of a.
With any complex number ϕ is associated a coherent
state jϕi defined by the relation jϕi ¼ expðϕa†Þj0i. The
probability generating function can then be written as
Gðz; tÞ ¼ hzjPðtÞi. The evolution of the fPnðtÞg induces
the evolution of the state vector, ∂tjPðtÞi ¼ Lða†; aÞjPðtÞi,
where L, written in its normal-ordered form, is the very
same function as in Eq. (2). With the LE probability
distribution pðz; tÞ defined in Eq. (6), we also associate
a vector

jpðtÞi ¼
Z

1

l
dzpcðz; tÞjzi þ q1ðtÞj1i þ qlðtÞjli; ð12Þ

where jzi is the coherent state with real eigenvalue
z ∈ ½l; 1�. From the evolution of pðz; tÞ one checks
that ∂tjpðtÞi ¼ L†ða†; aÞjpðtÞi, where L†ða†; aÞ is also
normal ordered. Using the resolution of the identity
2πI ¼ R R

∞
0 dzdz0 exp ð−izz0Þjizihz0j, one can show that

Eq. (8) reads hpðtÞjPð0Þi ¼ hpð0ÞjPðtÞi [32,33]. Thus,
within the Doi-Peliti formalism, the duality relation
[Eq. (8)] is a direct consequence of the fact that jPðtÞi
evolves with L and jpðtÞi with L†.
The field-theoretical approach to RD processes is based

on a functional integral representation of the evolution
operator expðLtÞ of the state vector jPðtÞi. Using the
Trotter formula and introducing resolutions of the identity
in terms of complex-conjugate coherent states, one can
derive the generating functional of correlation and response
functions in the presence of real sources [50],

Z½J; ~J� ¼
Z

DϕDϕ�e−S½ϕ;ϕ
��þ

R
dtðJϕþ ~Jϕ�Þ; ð13Þ

with the action S½ϕ;ϕ�� ¼ R
dt½ϕ�∂tϕ − Lðϕ�;ϕÞ�, where

ϕ and ϕ� are complex-conjugate fields.
The usual derivation of a LE from this field theory

goes as follows (see, e.g., [20,25,51]): After performing the
shift ϕ� → ϕ� þ 1, the fields ϕ and ϕ� are formally
replaced in the action S by a real field ψ , dubbed the
density field, and an imaginary field ~ψ , called the response
field. For binary reactions, Lð ~ψ þ 1;ψÞ is at most quadratic
in ~ψ , the term exp½R dt ~ψ2UðψÞ� with UðψÞ ¼ α2ψ − ðβ0 þ
β1Þψ2 in Z is formally written as a Gaussian integralR
Dη expð− R

dt½η2=2þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2UðψÞp

~ψη�Þ, and the resulting
argument of the exponential is thus linear in ~ψ . The
functional integral on the imaginary field ~ψ then yields

Z½J; ~J� ¼
Z

DψDηP(ηðtÞ)δ(fðψ ; η; ~JÞ)e
R

dtJψ ð14Þ

where PðηðtÞÞ ¼ expð− R
dtηðtÞ2=2Þ, f ¼ −∂tψþ

α2ψ − ð2β0 þ β1Þψ2 þ ~J þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½α2ψ − ðβ0 þ β1Þψ2�

p
η, and

δðfðψ ; η; ~JÞÞ is a functional Dirac function. Written under
this form, Z½J; ~J� is the generating functional of correlation
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functions derived from the LE, fðψ ; η; ~JÞ ¼ 0, where ηðtÞ
is interpreted as a Gaussian white noise and the derivation
above follows the standard Martin–Siggia–Rose–De
Dominicis–Janssen (MSRDJ) method in the reverse order
[52–54]. For instance, for pure annihilation (2A → ∅), this
yields the imaginary noise LE,

∂tψ ¼ −2β0ψ2 þ i
ffiffiffiffiffiffiffi
2β0

p
ψη: ð15Þ

The problem with this derivation is that it is purely formal.
Although exact to all orders of perturbation theory [34], it is
actually incorrect to trade the two complex-conjugate fields
ϕ and ϕ� for a real and an imaginary field in Z½J; ~J�
because the resulting functional integral is in general no
longer convergent at large fields (a fact that is immaterial
within perturbation theory). Indeed, the leading term at
large fields −β1ψ2 ~ψ2 has the wrong sign since ~ψ is purely
imaginary, contrary to the original term −β1ϕ2ϕ�2. The
imaginary noise in Eq. (15) is a consequence of this formal
and incorrect step. Notice that the derivation is performed
assuming that ψðtÞ is real, while a field evolving according
to Eq. (15) necessarily becomes complex.
To overcome the convergence problems discussed above

and the fact that the action S is not quadratic in ϕ� when
reactions A → pA with p > 2 are involved, we now
provide a proper and general field-theoretical derivation
of a LE by using contour deformations in the complex
plane. In contrast to the usual procedure, ϕ is deformed into
a purely imaginary variable ψ , and the conjugated field ϕ�
into a real variable ~ψ ∈ ½l; 1�. A complete derivation for a
particular RD process is presented in the Supplemental
Material [34]. In the spatially extended case, where
particles diffuse with rate D, the result reads

Z½J; ~J� ¼
Z

1

l
D ~ψ

Z
i∞

−i∞
Dψe−S½ψ ; ~ψ �þ

R
t;x
ðJψþ ~J ~ψÞ; ð16Þ

where the functional form of S has not changed (it still
involves the same function L as above, but its arguments
are different). Finally, using the same step as discussed
above (the MSRDJ formalism in the reverse order),
consisting of (i) rewriting the quadratic term in ψ as a
functional integral over a Gaussian field η and (ii) integrat-
ing over the imaginary variable ψ , we obtain Z½J; ~J� under
a form similar to Eq. (14) with ψ replaced by ~ψ and
fðψ ; η; ~JÞ replaced by gð ~ψ ; η; JÞ ¼ ∂t ~ψ þD∇2 ~ψ þ Að ~ψÞþ
J þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

2Bð ~ψÞp
η. Notice that the integration over ψ leading to

δðgÞ requires an integration by parts in S of the ~ψ∂tψ term
that changes its sign. A change of t into −t is thus necessary
to obtain the usual diffusion term, as can be seen on the
explicit expression of g above. Therefore, the correspond-
ing LE for ~ψ runs backwards in time. Setting J ¼ 0 and
defining ZðtÞ≡ ~ψð−tÞ, we finally obtain exactly the same
LE as Eq. (5).

The derivation above shows that the field ZðtÞ of the LE
(5) is closer in spirit to the (time-reversed) response field
than to the direct (density) field, and also that the source
term

R
Jψ in Z½J; ~J�—which is convenient to derive

correlation functions but may seem unphysical—has a
simple meaning here: it appears as an external force in
(5), which can then be used to calculate not only response
functions but also all correlation functions [55].
As a specific example of the method, we consider the

reactions 2A→
β0∅ and A→

α2
2A, together with diffusion at

rate D. This RD process is archetypical of the prominent
directed percolation (DP) universality class [2,3]. Through
the Doi-Peliti formalism, the action is readily derived.
Using the contour deformations described in [34], and
defining Zðx; tÞ ¼ ~ψðx;−tÞ we obtain

∂tZ ¼ D∇2Z − α2Zð1 − ZÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2β0ð1 − Z2Þ

q
η ð17Þ

with Z ¼ Zðx; tÞ ∈ ½−1; 1� (as determined by the contour
deformations), which is identical to Eq. (5) for this set of
reactions (supplemented with diffusion). For DP, the action
is quadratic both in ϕ and ϕ�, and another contour
deformation [58] leads to a LE on the other field ψðx; tÞ,

∂tψ ¼ D∇2ψ þ ψðα2 − 2β0ψÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ψðα2 − β0ψÞ

p
η; ð18Þ

with now ψ ¼ ψðx; tÞ ∈ ½0; α2=β0�. Note that Eqs. (17) and
(18) are identical up to a simple linear change of variable,
something referred to as rapidity symmetry. Note however
that Eq. (18) ceases to exist in the pure annihilation limit
α2 → 0 (“imaginary noise”) [59]. In contrast, Eq. (17)
remains well behaved, and should be considered as the
correct LE in such a case.
Another well-established universality class of nonequi-

librium absorbing phase transitions corresponds to RD
processes where the parity of the (local) number of particles
is preserved by the reactions [18,60]. Viewing the particles
as domain walls between two symmetric absorbing states,
the following phenomenological LE with two symmetric
absorbing barriers was postulated in [39]:

∂tφ ¼ D∇2φþ ðaφ − bφ3Þð1 − φ2Þ þ c
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − φ2

q
η: ð19Þ

With hindsight, this LE turns out to be the exact (time-

reversed) response-field LE for the RD process A→
α3
3A,

A→
α5
5A, 2A→

β0 ∅, which indeed belongs to this class. Last but
not least, it provides us with the microscopic parameter
identifications a ¼ −ðα3 þ α5Þ, b ¼ α5, and c ¼ ffiffiffiffiffiffiffi

2β0
p

.
To summarize, we derived exact LEs for RD processes

with at most bimolecular reactants and showed how they
can be used to calculate usual quantities of interest. Our
work clarifies several misunderstandings that have haunted
the related field-theoretical literature for decades, i.e., the
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reasons why some RD processes lead to imaginary noise,
why some can be written in terms of the so-called density
field whereas others can only be written in terms of the
response field, and how keeping track of the evolution of
the latter allows for computing correlation functions of the
original RD process.
Beyond its obvious importance in physics, chemistry,

and the many fields where problems can be explicitly
formulated in the form of RD processes, our work
may have particular impact for the numerous situations
where equations similar to Eq. (5) have been written
[29,40–43,61–66]. We hope our results will be put into
practice and that they will help strengthen and clarify the
use of Langevin equations in various fields.

We thank Claude Aslangul for keen advice and help on
analytic functions theory and Hélène Berthoumieux and
Gilles Tarjus for useful discussions.
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