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We introduce a technique relying on the use of auxiliary fields in order to eliminate explicit field-
derivatives that plague the high orders renormalization group treatment of shift-symmetric (derivative)
theories. This technique simplifies drastically the computation of fluctuations in such theories. This is
illustrated by deriving the two-loop renormalization group equations—and the three-loop anomalous
dimension—of the φ4 derivative theory inD ¼ 4 − ϵ, which is also relevant to describe the crumpled-to-flat
transition of polymerized membranes. Some features of this transition are provided.
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I. INTRODUCTION

Shift-symmetric theories or shift-symmetric enforced
preexisting theories are characterized, in the simplest
situation, by an invariance of the kind

φ → φþ c ð1Þ

where c is a constant vector. Such theories have been the
subject of a strong activity in the past and have received a
renewed interest in recent years, mainly in the context of
the study of modified theories of gravity, as well as in
string and brane theories. A strong motivation is that shift
symmetry results in specific renormalization properties.
This is for instance the case of Galileon field theory [1] that
displays field and space-time shift symmetries φ → φþ
cþ aμxμ where c and the aμ are constants. It obeys
nonrenormalization theorem [2,3] ; see [4] for a review
and [5] for a nonperturbative treatment. In the context of
Horǎva-Lifshitz gravity [6] it has been shown that shift
symmetry prevents the appearance of an infinite number of

interactions [7]. Generalized—polynomial—shift sym-
metry [8–10] has also been considered, notably in con-
nection with multicritical symmetry breaking. Very
recently, shift symmetry has been considered in the context
of asymptotically safe quantum gravity-matter theories
where this symmetry allows generating closed renormal-
ization group (RG) flow for the effective action, see,
e.g., [11]. Interestingly, motivated by these considerations,
a new universality class has been discovered that gathers
theories whose RG equations are projected on functions of
the kinetic term [12]. Shift symmetry have also been
studied in various other contexts including Horndeski
gravity [13,14], inflation [15,16], inflation in supergravity
[15] and in anti–de Sitter space [17].

II. MEMBRANES

Shift symmetry is also relevant in condensed matter
physics through the long distance description of both fluid
and polymerized membranes, see [18,19] for reviews. In
particular, polymerized membranes have been intensively
investigated these last twenty years following the discovery
of graphene [20,21] and graphene-like materials, see,
e.g., [22]. For a D-dimensional membrane embedded in
a d-dimensional Euclidean space, the parametrization of a
point x∈RD in the membrane is realized through the
mapping x → RðxÞ where R is a field in Rd. For obvious
reasons, the energy of the membrane can only depend on
variations of R so that the action should display a shift
symmetryRðxÞ → RðxÞ þCwhereC is a constant vector.
The relevant action to study polymerized membranes in D
dimensions is given by [23]:
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�
ð2Þ

where Greek indices run over 1…D and summation over
repeated indices is implicit. In Eq. (2), κ is the bending
rigidity constant, r is a tension coefficient that conveys the
main temperature dependence. The coefficients λ and μ,
which are associated with quartic interactions, are Lamé
(elasticity) coefficients that embody elasticity and shear
properties of the membrane; stability requires κ, μ, and the
bulk modulus B ¼ λþ 2μ=D to all be positive. In agree-
ment with shift symmetry, action (2) is expressed purely in
terms of field-derivatives. It displays an invariance under the
action of the Euclidean group of displacements EðdÞ that
includes both rotations and translations in d dimensions:
Rμ → RμνRν þ Cμ, where R is a rotation matrix and C a
constant vector, see, e.g., [24,25]. The model (2) is directly
relevant to study the crumpled-to-flat transition in polym-
erized membranes, see [23]. Indeed, varying the tension
coefficient r, one expects a phase transition between a
disordered, crumpled, phase at high temperatures and an
ordered, flat, phase at low temperatures, characterized by a
well-defined orientation of the membrane and, thus, a
nonvanishing average value of the tangent vector fields
tα ¼ ∂αR. This transition should occur in any dimension D
higher than the lower critical dimensionDlcðdÞ that has been
evaluated in [26] for an Euclidean embedding space of
dimensions d ¼ 3 to be close to 1.33 [27]. Note however
that, in a realistic model of membranes, self-avoidance very
likely destroys the crumpled phase, see, e.g., [28], so that
membranes always lie in their flat phase. The properties of
the crumpled-to-flat transition have been studied at one-loop
in the vicinity of the upper critical dimensionD ¼ 4 in [23],
within a large-d expansion in [29,30], by self-consistent
screening approximation (SCSA) [31,32] as well as within a
nonperturbative framework in [26,33–37]. Note finally that,
prior to its role as long distance effective action for
membranes, action (2) is nothing but the derivative version
of the OðdÞ φ4-model and, as such, represents the simplest
but nontrivial model of shift-symmetric derivative field
theory.
Starting from action (2), it is also possible to study the

flat phase of membranes [29–32,38–44] which is relevant
to investigate the properties of stable graphene and gra-
phene-like materials as well as that of biological membranes
endowed with a cytoskeleton. To do that, one considers a
flat configuration given by R0 ¼ ðx; 0dcÞ where 0dc is the
null vector of dimension dc ¼ d −D, and decomposes
the field R into RðxÞ ¼ ½xþ uðxÞ;hðxÞ� where u and h
represent D longitudinal, phonon, modes and d −D
transverse, flexural, modes, respectively. Power-counting

considerations then lead to the relevant action written in
terms of phonon and flexural modes [29–32,38–44]:

S½h;u� ¼
Z

dDx

�
κ

2
ð∂2αhÞ2 þ

λ

2
u2αα þ μu2αβ

�
; ð3Þ

where uαβ is the strain tensor that encodes the elastic
fluctuations around the flat phase configuration R0ðxÞ:
uαβ ¼ 1

2
ð∂αR:∂βR − ∂αR0:∂βR0Þ ¼ 1

2
ð∂αR:∂βR − δαβÞ. It

is given by, neglecting nonlinearities in the phonon field u:

uαβ ≃
1

2
½∂αuβ þ ∂βuα þ ∂αh:∂βh�: ð4Þ

Action (3) has been investigated perturbatively in the vicinity
of the upper critical dimension D ¼ 4 in [30,39,40,45–49];
see [50,51] for investigation of the disordered case. It
has also been studied by means of large-d expansions
[29,30,40,41,52,53], SCSA [31,32,42] and within a non-
perturbative approach [26,33,34].

III. SCALE AND CONFORMAL INVARIANCE

The two models (2) and (3) and, more generally, shift-
symmetric theories have recently been the subject of a
special attention regarding the question of the relation
between scale and conformal invariance, see [54] for a
review. Indeed, it is generally believed that, at least in 2 and 4
dimensions, conformal invariance follows from scale invari-
ance for theories displaying unitarity—in Euclidean space,
reflection positivity—and Poincaré invariance [55–57].
Also, for theories that are suspected to be nonunitary—
which is the case for the actions (2) and (3)—this property
no longer extends straightforwardly. For instance, Riva and
Cardy [58] have exhibited a model of elasticity—whose
action (3) is a generalization embedded in a Euclidean d-
dimensional space—which exhibits scale invariance but not
conformal invariance. One notes that Riva and Cardy have
considered a—nonunitary—free theory, see also [59], while
one expects conformal invariance for interacting theories.
Recently, Safari et al. [60] have investigated a large class of
derivative shift-symmetric, scalar, nonunitary theories,
including the one described by action (2) for d ¼ 1; see
also [61]. By computing the trace of the momentum-energy
tensor, they have shown that these theories were displaying
conformal invariance at the fixed point, in agreement with
the common belief. Conversely, Mauri and Katsnelson [62]
have investigated the φ4 vectorial, derivative theory in its flat
phase described by action (3). On the same basis, they have
concluded that dilatation invariance at the fixed point does
not extend to full conformal invariance at the fully attractive
fixed point controlling the low temperatures, flat, phase. If
this is confirmed, this would constitute an uncommon
example of interacting but non conformally invariant model,
see [63].
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IV. BEYOND ONE-LOOP ORDER

These results, as well as almost all results derived in the
context of shift-symmetric, derivative field theories, have
been obtained at leading order: one-loop order in the
perturbative context or using a low-derivative truncated
action in the context of the nonperturbative RG [64,65].
There is a notable exception: the φ4 derivative theory in its
ordered phase, described by action (3), which has been
investigated at high orders in perturbation theory. A
characteristic of this model is that its propagators are given
by [30]:

Gij
h ðpÞ ¼ hhiðpÞhjð−pÞi ¼ δij

κp4

Gαβ
u ðpÞ ¼ huαðpÞuβð−pÞi ¼ P⊥

αβ

μp2
þ Pk

αβ

ðλþ 2μÞp2
ð5Þ

where Pk
αβ ¼ pαpβ=p2, P⊥

αβ ¼ δαβ − pαpβ=p2 while the
indices i, j run over 1…d −D and α, β over 1…D.
One sees on these expressions that Gαβ

u ðpÞ involves all
the coupling constants associated with the interactions.
Thus, considering the two-point functions is sufficient to
get the renormalization of all these couplings. This explains
why this model has been investigated, although thirty years
after the one-loop computation of Aronovitz and Lubensky
[39], successively at two [45,46], three [47,49], and four
loop order [48].
Clearly, it would be also very valuable to be able to

extend the one-loop computation performed by Paczuski
and Kardar [66] on the action (2) describing the crumpled-
to-flat transition at higher orders. However, one faces here
an important difficulty: the derivative nature of the inter-
action makes the RG treatment of action (2) extremely
tedious if it is addressed by brute force. Indeed, the
propagator of the field R is, in this case,

Gij
RðpÞ ¼ hRiðpÞRjð−pÞi ¼ δij

κp4
: ð6Þ

It involves only the coupling κ and to get the renormaliza-
tion of the Lamé coefficients, one has to resort to four-point
functions. Also, the derivative or, in Fourier space, momen-
tum dependence of the four-point vertices gives rise to
Feynman diagrams involving a very complex structure and
a kinematic of the external momenta that are extremely
difficult to manage beyond one-loop order despite the use
of mathematical software likeMathematica and its package
LITERED [67,68] to reduce the loop integrals. This is the
reason why this model has been only studied at leading
order in a loop-expansion.

V. AUXILIARY FIELDS TECHNIQUE

We propose here a novel treatment of derivative shift-
symmetric theories that makes their RG treatment as easy

as that of their nonderivative counterparts. The main—and
simple—idea is that a derivative theory can be completely
reparametrized in terms of auxiliary fields that represent the
space-derivative of the original field(s). We basically follow
the procedure first discussed by Faddeev and Popov in the
framework of gauge theories [69], later applied in disor-
dered systems [70] or dynamical theories [71–73]. Thanks
to this trick, we are brought back to a theory where there are
no more derivative interactions. We apply this technique to
the φ4 derivative theory (2) and derive the RG equations for
the two coupling constants and tension coefficient at two-
loop order as well as the anomalous dimension at the first
nontrivial—three-loop—order and discuss some properties
of the crumpling-to-flat transition.
One reparametrizes the action (2) in terms ofD auxiliary

d-components fields fAαg, α ¼ 1…D so that the partition
function of the theory reads (using the notation φ instead
of R):

Z ¼
Z

Dφ
YD
α¼1

DAαδðAα − ∂αφÞe−S½fAαg�:

The delta constraint can be raised with the help of a second
set of D auxiliary d-components fields fBβg:

Z ¼
Z

Dφ
YD
α;β¼1

DAαDBβe−S½fAαg�e−i
R

dDxBα:ðAα−∂αφÞ: ð7Þ

In the partition function (7), the fields fBαg and fφg appear
only in terms quadratic in the fields. As a consequence,
there is no interaction vertex with B or φ legs. We conclude
that there are no 1PI Feynman diagrams with such fields as
external legs and the B − φ sector renormalizes trivially;
only the auxiliary fields fAαg renormalize nontrivially.
The matrix of second derivative of S0 ¼ Sþ i

R
dDxBα:

ðAα − ∂αφÞ in the basis fXαg ¼ ðfAαg; fBαg;φÞ is given,
in Fourier space, by:

δ2S0

δXi
αδY

j
β

¼

0
B@

pαpβ þ δαβr iδαβ 0

iδαβ 0 −pα

0 pβ 0

1
CAδij;

with the indices i, j running from 1 to d. The inverse matrix
provides the propagator

Gð2Þij
αβ ¼

0
BBBBB@

Pk
αβ

p2þr −iP⊥
αβ

−ipα

p2ðp2þrÞ
−iP⊥

αβ rP⊥
αβ

pα

p2

ipβ

p2ðp2þrÞ − pβ

p2
1

p2ðp2þrÞ

1
CCCCCA
δij;

where one remarks that the propagator of the fAαg-fields is
given by Pk

αβ=ðp2 þ rÞ. The existence of a longitudinal
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propagator is the only change with respect to the standardφ4

theory. This is a tremendous simplification compared to the
usual, brute force, treatment of derivative field theories.

VI. RENORMALIZATION GROUP EQUATIONS
AT TWO-LOOP ORDER

We have derived the two-loop order RG equations for
the model (7) within the modified minimal subtraction MS
scheme. The diagrammatic is the one of the φ4 theory
while the vertices involve two coupling constants λ
and μ and a tensorial algebra associated with both the
vectorial—Roman—and derivative—Greek—indices. We
have used Mathematica to perform the algebra and
compute the integrals. One introduces the renormalized
field AαR through Aα ¼ Z1=2AαR as well the dimensionless
renormalized coupling constants λR and μR through λ ¼
kϵZ−2ZλλR and μ ¼ kϵZ−2ZμμR. Here, k is the running
momentum scale and ϵ ¼ 4 −D. Finally, within the MS
scheme, one introduces the scale k̄2 ¼ 4πe−γEk2 where γE
is the Euler constant. One defines the RG flow of the
renormalized coupling constants at fixed bare theory
βλ ¼ ∂tλ, βμ ¼ ∂tμ and βr ¼ ∂tr with t ¼ log k̄ where,
for simplicity, and from now on, we omit the index R for
the renormalized quantities. The running field anomalous
dimension is given by η ¼ −∂t logZ. The RG functions at
two-loop order are thus given by:

βλðλ; μÞ ¼ −ϵλþ c1ðð6dþ 7Þλ2 þ 2ð3dþ 17Þλμ

þ ðdþ 15Þμ2Þ − c21
6
ðð69dþ 52Þλ3

þ ð54d2 − 16dþ 541Þλ2μ
þ ð36d2 þ 281d − 110Þλμ2
þ ð6d2 þ 112d − 95Þμ3Þ ð8Þ

βμðλ; μÞ ¼ −ϵμþ c1ðλ2 þ ðdþ 21Þμ2 þ 10λμÞ

þ c21
12

ðð96dþ 55Þλ3 þ ð470dþ 289Þλ2μ
þ ð146dþ 421Þλμ2 þ ð−212dþ 475Þμ3Þ ð9Þ

βrðr; λ; μÞ ¼ −2rþ 3c1rðð2dþ 1Þλþ ðdþ 5ÞμÞ

−
3c21r
4

ðð19d − 1Þλ2 þ 2ð6d2 þ 5dþ 25Þλμ
þ ð4d2 þ 41dþ 27Þμ2Þ ð10Þ

with c1 ¼ 1=96π2. This last equation provides the running
exponent νðλ; μÞ:

νðλ;μÞ ¼ 1

2
þ 3c1

4
ðð2dþ 1Þλþ ðdþ 5ÞμÞ

þ 3c21
16

ðð24d2 þ 5dþ 7Þλ2 þ 2ð6d2 þ 61dþ 5Þλμ
þ ð2d2 þ 19dþ 123Þμ2Þ ð11Þ

while the running field renormalization ηðλ; μÞ at the first
nontrivial—three-loop—order is given by:

ηðλ; μÞ ¼ ðdþ 2Þðλþ 2μÞ
3ð32π2Þ3 ðð2dþ 3Þλ2 þ 2ðdþ 9Þλμ

þ ðdþ 19Þμ2Þ: ð12Þ

Equations (8)–(12) constitute our main results. They
generalize to the next nontrivial order the expressions
derived by Paczuski et al. [23]. Equations (8), (9), and (12)
also generalize to d ≥ 1-component vector fields those
derived by Safari et al. [60] in the case of scalar fields. To
make contact with their expressions, one has to take the
limit d → 1 in our RG functions (8), (9) and (12) and to
form the combination g ¼ λ=2þ μ whose RG flow gives
that found in [60] while one finds η ¼ 5g3=ð4πÞ6 also in
agreement with [60].

VII. CRUMPLED-TO-FLAT TRANSITION
IN POLYMERIZED MEMBRANES

As said, the model (2) has been investigated perturba-
tively at one-loop order within an ϵ-expansion in [23]
and by other techniques [26,29–37]. In the vicinity of
D ¼ 4, the one-loop computation has allowed to identify a
phenomenon of fluctuation-induced first order phase
transition: below a critical value of the dimension d,
approximately equal to dc ∼ 218, no stable fixed point is
found so that the RG flow runs away at infinity and the
transition is expected to be of first order, while above dc
one finds a nontrivial fixed point and the transition is
expected to be of second order. A large amount of
numerical simulations have been performed on this
model in order to determine the nature of the phase
transition in the physical—D ¼ 2, d ¼ 3—case, see,
e.g., the contributions of Cantor and of Gomper and
Kroll in [18]. These results have been controversial as they
have led to conclude either to a first order transition [74,75]
or to a second order one [76]. The nonperturbative
approaches, performed also directly in D ¼ 2 and d ¼ 3
dimensions, have also led to various kinds of transitions,
second [26] or first order [35], according to the kind of
truncation used.
One-loop order. Let us now discuss our predictions for the

crumpled-to-flat transition. One starts with the one-loop
order results that have not been explicitly given in the past
literature. At leading order in ϵ, one finds four solutions in
agreementwith [23]. They aregivenby: λ¼ð16π2=3ÞΩϵ and
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μ ¼ ð16π2=3ÞX½Ω�Ωϵ with Ω ¼ 0;Ω ¼ Ω½1; 1; d�;Ω ¼
Ω½x0; y0; d� and Ω ¼ Ω½y0; x0; d� where the function
Ω½x; y; d�, as well as the parameters x0 and y0, are given
in the Appendix. One considers the case D < 4. The value
Ω ¼ 0 corresponds to the Gaussian fixed point which is
always twice unstable [77] while the value Ω½y0; x0; d�
corresponds to a once unstable one. The stability of the
other fixed points depends on the value of dwith respect to a
critical valuedc. Ford > dc, the valueΩ½1; 1; d� corresponds
to a once unstable fixed point and the value Ω½x0; y0; d� to a
stable one. This last fixed point controls the second order,
crumpled-to-flat, transition. For d < dc, the fixed points
associated with the values Ω½1; 1; d� and Ω½x0; y0; d� are
complex ones with conjugate coordinates. There is no longer
any fully stable fixed point, and the transition is expected to
be of first order. At one-loop order, the critical value dc is
given by the root of a polynomial, see the Appendix, and is
given by dc ≃ 218.20.
Two-loop order. At two-loop order, the situation is not

qualitatively modified. There are still four fixed points and,
for d > dc, only one, corresponding to Ω½x0; y0; d�, is fully
stable. The coordinates of the fixed points are given in the
Appendix. With the help of these coordinates, one can
compute several physical quantities at second order in ϵ like
the critical exponents ν and η. However, their full d-
dependence is extremely involved and not very useful to
explicit. Also, as seen from the value of dc, in the vicinity of
the upper critical dimensionD ¼ 4, the second order phase
transition occurs at large values of the embedding dimen-
sion d. It is thus relevant to evaluate the critical quantities
within a 1=d expansion. From the expression of νðλ; μÞ,
Eq. (11), one finds at orders 1=d and ϵ2 at the stable
fixed point:

ν¼ 1

2
þ
�
1

4
−
33

2d

�
ϵþ

�
1

8
þ129

8d

�
ϵ2þO

�
ϵ

d2
;
ϵ2

d2
;ϵ3

�
ð13Þ

that coincides exactly with the results following the 1=d
analysis of Paczuski and Kardar [66] when it is further
expanded in powers of ϵ. In the same way, from the
expression of η, Eq. (12), one finds, at the stable fixed
point:

η ¼ 25

3d
ϵ3 þO

�
ϵ3

d2
; ϵ4

�
ð14Þ

that also coincides with the expression obtained in [66].
Expressions (13) and (14) provide strong checks of our
computations, while higher order in 1=d or even the full
expressions can be easily derived from the Appendix. A
quantity of strong interest is the critical value dc at this
order. It is computed by requiring that the coordinates of
the stable fixed point develop an imaginary part when
d → d−c . One finds:

dcðϵÞ ¼ 218.20 − 448.25ϵþOðϵ2Þ ð15Þ

where we emphasize that the correction of order ϵ would
have been extremely painful to get without the present
auxiliary fields formalism.
As seen on expression (15), the correction of order ϵ is

large and of the same order of magnitude than the
dominant term. Note that this is a very generic feature
of fluctuation-induced first order phase transitions, where
there exists a critical number Nc of the number of
components N of the order parameter above which the
transition is of second order and under which it is of first
order. One has, for instance, in frustrated magnets, see,
e.g., [78] NcðϵÞ ¼ 21.8–23.4ϵ or in electroweak phase
transition [79] NcðϵÞ ¼ 718–990.83ϵ. In order to get
trustable predictions as for the nature of the crumpled-
to-flat phase transition in the physical dimension D ¼ 2,
several techniques can be used. One can—easily with the
present, auxiliary fields, approach—push the ϵ-expansion
at higher orders and resum the series dcðϵÞ obtained.
However, obtaining a converged result in D ¼ 2 starting
from the upper critical dimension D ¼ 4 is likely to be an
extremely difficult task in practice, requiring to compute
high-order terms in the series expansion and to employ
sophisticated resummation techniques. Still with the help
of the auxiliary fields approach one could, alternatively,
make use of the functional RG using high-order trunca-
tions in the fields and field-derivatives. However, inves-
tigations done in [36], where a field expansion up to order
φ8 has been employed, have revealed strong variations of
the results with the order of the truncation. This again
implies that high-order truncations or even the full field
content may be required to obtain converged results.
Finally, conformal bootstrap techniques, that have allowed
to get well-converged exponents in the context of the
standard φ4 theory, are very promising provided that the
conformal invariance of action (2) at the fixed point is
definitely established and the techniques usable.

VIII. CONCLUSION

We have introduced a technique allowing to investigate
and determine the RG properties of derivative shift theories
with the same level of technicality as usual—nonderivative
—theories. This allowed us to derive the two-loop RG
equations of the φ4 derivative theory, also relevant to study
the crumpled-to-flat transition in membranes thirty-five
years after the one-loop computation of Paczuski et al..
This technique can be used to extend our computation at
higher orders. It can also be easily generalized to a situation
involving several fields, as in the flat phase of membranes,
see action (3), where phonons and flexural degrees of
freedom coexist, even if this case has already been studied
at high (four) orders within a loop expansion. Still in the
context of membranes, our approach is also relevant to

AUXILIARY FIELDS APPROACH TO SHIFT- … PHYS. REV. D 108, L081702 (2023)

L081702-5



investigate fluid membranes where one has moreover to deal
with gauge—diffeomorphism—invariance [18,80]. Finally,
our technique can be of great interest and can be easily
implemented in various contexts around that of quantum
gravity, as Galileon theory, Horǎva-Lifshitz gravity, string,
brane theory, … either in a perturbative or in a non-
perturbative framework.
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APPENDIX: FIXED POINTS AT ONE
AND TWO-LOOP ORDER

At one-loop order, the four fixed points are given by:

λ1 ¼
16π2

3
Ωϵ and μ1 ¼

16π2

3
X½Ω�Ωϵ ðA1Þ

with Ω ¼ 0;Ω ¼ Ω½1; 1; d�;Ω ¼ Ω½x0; y0; d� and Ω ¼
Ω½y0; x0; d� and the parameters x0 ¼ ð−1þ i

ffiffiffi
3

p Þ=2 and
y0 ¼ −ð1þ i

ffiffiffi
3

p Þ=2. The functions Ω½x; y; d� and X½Ω� are
defined by:

Ω½x; y; d� ¼ 1

P1ðdÞ
�
4P2ðdÞ þ x

P3ðdÞ
T1=3 þ yT1=3

�
and X½Ω� ¼ ð3dþ 63 − P4ðdÞΩÞ

ð3dþ 45þ P5ðdÞΩÞ
ðA2Þ

where one defines T ¼ P6ðdÞ þ 3
ffiffiffi
3

p ffiffiffiffi
Δ

p
and Δ ¼ −P1ðdÞ2P7ðdÞ2P8ðdÞ with P1ðdÞ;…; P8ðdÞ given by:

P1ðdÞ ¼ 80þ 28d − 297d2 − 35d3 − d4

P2ðdÞ ¼ 146 − 30dþ 18d2 þ d3

P3ðdÞ ¼ 372736 − 129312d − 18960d2 − 25493d3 þ 3042d4 þ 474d5 þ 13d6

P4ðdÞ ¼ 22þ 22dþ d2

P5ðdÞ ¼ 94þ 25dþ d2

P6ðdÞ ¼ 219152384 − 124941312dþ 53895600d2 þ 14104092d3 − 103622787d4 − 34822215d5

− 3884853d6 − 193509d7 − 4365d8 − 35d9

P7ðdÞ ¼ 2304þ 971dþ 83d2 þ 2d3

P8ðdÞ ¼ 4096 − 5376dþ 3765d2 − 1981d3 þ 9d4 ðA3Þ

For the fixed point parametrized by Ω½x0; y0; d�, the critical dimension dc above which the transition is of second order is
determined by finding the value of d that cancels the imaginary part of the fixed point. Here, it can be seen that it is directly
determined by the sign of Δ, hence the root of the polynomial P8ðdÞ. One obtains dc ≃ 218.20.
At two-loop order, the four fixed points are given by:

λ2 ¼
1

AðdÞ ½ð485þ 829dþ 96d2Þλ41 þ ð4444þ 4398dþ 728d2Þλ31μ1 þ ð11038þ 4768dþ 1168d2 þ 36d3Þλ21μ21
þ ð2940þ 4378dþ 548d2 þ 24d3Þλ1μ31 þ ð1045þ 603dþ 88d2 þ 4d3Þμ41
− 32π2ðð52þ 69dÞλ31 þ ð541 − 16dþ 54d2Þλ21μ1 − ð110 − 281d − 36d2Þλ1μ21 − ð95 − 112d − 6d2Þμ31Þ�

μ2 ¼
−1
AðdÞ ½ð163þ 380dþ 192d2Þλ41 þ ð1520þ 2493dþ 1072d2Þλ31μ1 þ ð4350þ 4269dþ 966d2Þλ21μ21
þ ð3064þ 2715d − 154d2Þλ1μ31 þ ð2375 − 353d − 192d2Þμ41
− 16π2ðð55þ 96dÞλ31 þ ð289þ 470dÞλ21μ1 þ ð421þ 146dÞλ1μ21 þ ð475 − 212dÞμ31Þ� ðA4Þ

where AðdÞ is defined by:

AðdÞ ¼ 2304π2ð768π4 þ ð6þ 9dÞλ21 þ 2P4ðdÞλ1μ1 þ P5ðdÞμ21 − 32π2ðð6þ 3dÞλ1 þ ð19þ 2dÞμ1ÞÞ: ðA5Þ
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Using these coordinates, the critical value of dc at the ϵ-order can be computed. This is done by expanding dc into
dc0 þ ϵdc1 and requiring that dc1 takes the value under which the coordinates of the stable fixed point develop an imaginary
part. One finds:

dcðϵÞ ¼ 218.20 − 448.25ϵþOðϵ2Þ ðA6Þ
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