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We derive the necessary conditions for implementing a regulator that depends on both momentum and
frequency in the nonperturbative renormalization-group flow equations of out-of-equilibrium statistical systems.
We consider model A as a benchmark and compute its dynamical critical exponent z. This allows us to show that
frequency regulators compatible with causality and the fluctuation-dissipation theorem can be devised. We show
that when the principle of minimal sensitivity (PMS) is employed to optimize the critical exponents η, ν, and z,
the use of frequency regulators becomes necessary to make the PMS a self-consistent criterion.
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I. INTRODUCTION

Nonequilibrium statistical physics, and in particular the
study of out-of-equilibrium phase transitions, has become
in the past few decades one of the challenges of statistical
physics. A large variety of tools have been developed to
tackle these problems, and one of the most powerful is the
dynamical renormalization group (RG) [1,2], which extends
the equilibrium field-theoretic approach to nonequilibrium.
Although many basics features of the analog of the partition
function (its positivity, its convexity with respect to sources,
etc.) have still not been proven in general, many results have
been achieved using dynamical RG techniques, for instance the
description and characterization of several universality classes
[3–5].

The nonperturbative and functional version of this approach
has also proven very well-suited for nonequilibrium problems
[6], probably because many of them present intrinsically
nonperturbative characteristics that prevent the usual RG from
being effective in these cases. For instance, some models
yield exact results within the RG formalism at all orders
in the perturbative expansion, although these results are
incomplete, that is, they fail to account for the corresponding
experimental, numerical, or exact results [7–9]. This seems to
indicate some nonanalytical features of the models that only
a nonperturbative and/or functional approach could handle
correctly [9–15] (see also [16,17] for the same kind of
problems in equilibrium disordered systems).

The key to the success of the nonperturbative renormal-
ization group (NPRG) approach in equilibrium physics is its
ability to take care of growing fluctuations near criticality
by integrating them out in a controlled way [18]; for an
introduction, see [19–21]. This is achieved by coarse-graining
the spatial fluctuations using a regulator function Rk(|x − y|)
in the action of the model, which has a typical range |q| � k in
momentum space. This key feature of the NPRG, reminiscent
of the block-spin idea, is probably not sufficient in many
nonequilibrium problems, where temporal fluctuations also
play a major role. The introduction of a regulator that would
also take care of these temporal fluctuations therefore seems
important. A first example in which a frequency regulator
could be needed is the parity-conserving-generalized-voter
model, which is a one-species reaction-diffusion system where

the parity of the number of particles is conserved by the
dynamics [22,23]. Some approximate results obtained with
the NPRG [9] for this model disagree qualitatively with exact
ones [24], indicating that the fluctuations are not properly taken
into account, at least within the local potential approximation
(LPA), which has proven to be very efficient in equilibrium
problems.

To be more specific, the most used approximation in the
NPRG context is the derivative expansion (DE) [18,25]. In
this approximation, the contributions of all the correlation
functions to the RG flow are retained, but their momentum
and frequency dependence is replaced by a Taylor expansion.
The DE is valid and accurate if the radius of convergence of
this Taylor expansion is larger than the range of the momentum
and frequency integrals in the RG flow equations. In this case,
the correlation functions and the propagator used in the RG
flow are well approximated by their momentum and frequency
expansion, at least in the region that contributes to the integrals
in the flow, that is, in the region that is not suppressed by the
regulator Rk(q).

At equilibrium, the role of the regulator Rk(q) introduced
within the NPRG framework is therefore to effectively cut
off the momentum integration from |q| ∈ [0,∞[ to 0 � |q| �
k. The radius of convergence of the momentum expansion
of the correlation functions is probably of order k, which
coincides with the typical range of the regulator Rk(q). This
allows for the replacement of the correlation functions and
the propagator by their Taylor expansion in the integrals
of the flow equations, and it probably explains the success
of the DE [26,27]. For nonequilibrium systems, this issue
is subtler because the RG flow equations involve also a
frequency integral. This integral is convergent [28] without
any regularization, which means that the integrand decreases
sufficiently rapidly for the region of large frequencies to
contribute a finite amount. However, the fact that the frequency
integral is convergent does not guarantee that it is accurately
computed when the correlation functions are replaced in
the integrand by their frequency expansion. Therefore, this
integral must also be cut off by a regulator to avoid summing
contributions at large frequencies corresponding to a region
where the Taylor expansion of the correlation functions is not
valid.
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Our goal here is to design frequency regulators that
generalize the role played by the regulators in the usual
equilibrium NPRG settings to nonequilibrium cases. So far,
and to the best of our knowledge, such a regulator has not been
engineered, and we discuss here the theoretical properties that
it should show in order to both fulfill its regularization role
and enforce important physical constraints such as causality
and the fluctuation-dissipation theorem. The model A, also
called the kinetic Ising model, and its multidimensional-
spin counterpart [the kinetic O(N ) model] [29] are used as
benchmark models to test our regulators.

II. MODEL A AND ITS FIELD-THEORETIC
FORMULATION

The model A or kinetic Ising model is one of the simplest
models one can think of to describe out-of-equilibrium critical
phenomena. It is a coarse-grained description of Glauber
dynamics for Ising spins [2,29] : On a d-dimensional lattice,
Ising spins are allowed to flip with transition rates that depend
on the orientation of their neighbors and satisfy the detailed
balance condition, guaranteeing the system will relax toward
equilibrium at large time. The model A uses a Langevin
description of the spins dynamics, and it is therefore stated in
terms of a coarse-grained local spin variable φ(x,t) following
the stochastic equation (in the Itō sense):

∂tφ(x,t) = −δH

δφ
+ ζ (x,t), (1)

where H = H [φ] is the usual Ginzburg-Landau Hamiltonian:

H [φ] =
∫

x

(
1

2
(∇φ)2 + V (φ)

)
(2)

with x ≡ (x,t),
∫

x ≡ ∫
ddx dt , V (φ) = r/2 φ2 + u/4! φ4, and

ζ (x) is a Gaussian white noise taking into account the
fluctuations of the order parameter coming from its coarse-
grained nature. The noise probability distribution P (ζ ) is
consequently

P (ζ ) ∝ e− 1
4

∫
x ζ (x)2

(3)

yielding in particular

〈ζ (x)ζ (x′)〉 = 2 δ(t − t ′)δd (x − x ′), (4)

where we have rescaled the time and the Hamiltonian such that
the variance of the noise is 2. From this Langevin equation,
a field-theoretic approach can be derived using the Martin-
Siggia-Rose–de Dominicis-Janssen (MSRDJ) approach
[30–32]. In this formalism, the mean value (over the real-
izations of the noise) of a given observable O[φ] is given by

〈O[φ]〉ζ =
∫

Dφ Dφ̃ e−S[φ,φ̃]O[φ] (5)

with

S[φ,φ̃] =
∫

x
φ̃

(
∂tφ − φ̃ + δH

δφ

)
. (6)

Notice that within this formalism, the functional integral
over φ̃ (which is called the “response” field for reasons that
will become clear in the following) is performed along the
imaginary axis, whereas φ is a real field.

III. NONPERTURBATIVE RG FORMALISM

As in equilibrium statistical physics, the starting point of the
field theory is the analog of the partition function associated
with the previous action S defined in Eq. (6), and which reads

Z[j,j̃ ] =
∫

Dφ Dφ̃ e−S+∫
x J (x)T ·�(x), (7)

where we use a matrix notation and define the following
vectors:

�(x) =
(

φ(x)
φ̃(x)

)
and J (x) =

(
j (x)
j̃ (x)

)
. (8)

As in equilibrium, the generating functional of the connected
correlation and response functions is W[J ] = logZ[J ]. We
also introduce its Legendre transform, the generating func-
tional of the one-particle irreducible correlation functions
	[
], where 
 = 〈�〉.

To determine the effective action 	, we apply the NPRG
formalism and write a functional differential equation that
interpolates between the microscopic actionS and the effective
action 	. The interpolation is performed through a momentum
scale k and by integrating over all the fluctuations with
momenta |q| > k, while those with momenta |q| < k are
frozen. At scale k = �, where � is the ultraviolet cutoff
imposed by the (inverse) microscopic scale of the model
(e.g., the lattice spacing), all fluctuations are frozen and the
mean-field approximation becomes exact; at scale k → 0, all
the fluctuations are integrated over and the original functional
Z is recovered. The interpolation between these scales is made
possible by using a regulator Rk(x), whose role is to freeze
out all the fluctuations with momenta |q| < k. This regulator
is introduced by adding an extra term to the action and thus
defining a new partition function Zk:

Zk[j,j̃ ] =
∫

Dφ Dφ̃ e−S−�Sk+
∫

x J (x)T ·�(x) (9)

with

�Sk = 1

2

∫
x,x′

�(x)T · Rk(x − x′) · �(x′), (10)

where Rk is a 2 × 2 regulator matrix, depending both on space
and time, and whose task is to cancel slow-mode fluctuations.
We shall see in the following sections that the regulator
form (and especially its frequency part) is constrained by
causality and by symmetry considerations. We also define the
effective average action 	k as a modified Legendre transform
of Wk[J ] = logZk[J ] [33]:

	k[
] + Wk[J ]

=
∫

x
J T · 
 − 1

2

∫
x,x′


(x)T · Rk(x − x′) · 
(x′) (11)

in such a way that 	k coincides with the action at the mi-
croscopic scale—	k=� = S—and with 	 at k = 0—	k=0 =
	—that is, when all fluctuations have been integrated over.
The evolution of the interpolating functional 	k between these
two scales is given by the Wetterich equation [33,34]:

∂k	k[
] = 1

2
Tr

∫
x,x′

∂kRk(x − x′) · Gk[x,x′; 
], (12)
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where Gk[x,x′; 
] ≡ [	(2)
k + Rk]−1 is the full, field-

dependent propagator and 	
(2)
k is the 2 × 2 matrix whose

elements are the 	
(2)
k,ij defined such that

	
(n)
k,i1,...,in

[xi ; 
] = δn	k[
]

δ
i1 (x1) · · · δ
in(xn)
. (13)

The Wetterich equation (12) represents an exact flow equa-
tion for the effective average action 	k , which we solve
approximately by restricting its functional form. We use in
the following the DE, stating that instead of following the full
	k along the flow, only the first terms of its series expansion in
space and time derivatives of 
 are considered. These terms
have to be consistent with the symmetries of the action S,
and we therefore discuss them before giving an explicit ansatz
for 	k .

Since the model A should relax toward thermodynamic
equilibrium at large time, one expects the partition function
Z to be symmetric under time reversal, and this leads to the
invariance of the action S under the following transformation
[35,36]:

φ′(x,t) = φ(x,−t),
(14)

φ̃′(x,t) = φ̃(x,−t) − φ̇(x,−t),

where ḟ (t) ≡ ∂tf (t). Provided that the noise term is Gaussian,
the invariance of the action under this transformation is the
signature of the equilibrium dynamics and of the fluctuation-
dissipation theorem (FDT) [36].

The previous considerations about FDT allow us to write
the following ansatz for 	k , at first order in time derivative,
and second order in space derivative [6]:

	k[ψ,ψ̃] =
∫

x
ψ̃

[
Xk(ψ)(∂tψ − ψ̃) + δγeq,k

δψ(x)

]

=
∫

x
ψ̃

[
Xk(ψ)(∂tψ − ψ̃) + U ′

k(ψ)

−Zk(ψ)∇2ψ − 1

2
Z′

k(ψ)(∇ψ)2

]
, (15)

where, at equilibrium,

	eq,k[ψ] =
∫

ddx γeq,k(ψ(x,t)) (16)

=
∫

ddx

[
1

2
Zk(ψ)(∇ψ)2 + Uk(ψ)

]
. (17)

Let us briefly justify the form of 	k . It is natural to
choose it invariant under transformation (14) so that FDT
holds at all k. This implies that the terms proportional to
ψ̃2 and ψ̃∂tψ renormalize in the same way and therefore
depend on a single function Xk , which is a tremendous
simplification of the RG flow. The second part of the ansatz,
ψ̃ ∂γeq,k/∂ψ(x,t), is linear in ψ̃ and is therefore invariant
on its own since the transformation (14) generates a term
proportional to ∂tψ ∂γeq,k/∂ψ(x,t) = ∂tγeq,k(ψ) that vanishes
after time integration in the stationary regime. Notice that
because of the FDT, higher-order terms in ψ̃ are not allowed
at this order of the DE, and thus Uk , Zk , and Xk are functions
of ψ only (see [37] for further explanations).

Choosing ansatz (15) implies to use only regulators com-
patible with (14), and we show in the following that it is indeed
possible to devise such regulators even when they depend on
frequencies. Of course, it is possible to consider regulators that
are incompatible with (14) at the price of giving up FDT for
k > 0. This implies that in 	k the two terms ψ̃2 and ψ̃∂tψ no
longer renormalize in the same way. In this case, the ansatz
(15) becomes

	k[ψ,ψ̃] =
∫

x
ψ̃

[
Xk(ψ)∂tψ + Wk(ψ)ψ̃ + δγeq,k

δψ(x)

]
. (18)

Notice that when the field dependence of Xk(ψ) and Wk(ψ) is
neglected [Xk(ψ) → X̄k and Wk(ψ) → W̄k] and the regulator
is frequency-independent, the flows of X̄k and W̄k are identical
[38]. This incidental property is, however, lost when the field
dependence of these functions is kept.

Using ansatz (15) drastically simplifies the resolution of the
Wetterich equation since a functional differential equation is
converted into a set of partial differential equations over the
functions Uk , Zk , and Xk . The role of the regulator is essential
for the validity of this approximation, and we therefore discuss
its properties in more detail in the following section.

IV. FREQUENCY REGULATOR

Now that we have introduced the NPRG formalism, and
before explaining how the flow of the different renormalization
functions is computed, we have to focus on the regulator term,
whose role is crucial for ensuring the validity of the DE and
the stability of the form of the ansatz (15) under the RG flow.

Let us first recall that the MSRDJ formalism together with
Ito’s prescription does not allow for a term in the action not
proportional to the response field φ̃. This implies that there
is no cutoff term in the φ2 direction, and the regulator matrix
defined in Eq. (10) can be written in full generality as

Rk(x) =
(

0 R1,k(x,t)

R1,k(x,−t) 2R2,k(x,t)

)
, (19)

where the minus sign in R1,k(x,−t) is a consequence of �Sk

being written in matrix form, and the factor 2 in front of
R2,k has been included for convenience. Notice that these two
regulator terms have meaning for the underlying Langevin
equation. Indeed, adding a regulator R1,k means changing the
external force in the Langevin equation:

F ≡ −δH

δφ
→ F + �Fk, (20)

where �Fk(x) = − ∫
u R1,k(u − x)φ(u). The regulator R1,k is

thus similar to the usual masslike regulator used at equilibrium.
We restrict ourselves in the following to additional forces
�Fk , which are causal. This implies R1,k(x,t > 0) = 0, which
translates to R1,k(x,t) ∝ �(−t) (� being the Heaviside step
function).

On the other hand, adding a regulator R2,k is equivalent to
modifying the distribution of the noise, and, if we initially had
a white noise, it means changing the noise correlations:

C(x,x′) ∝ δ(x − x′) → δ(x − x′) − R2,k(x − x′), (21)
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and the noise is now colored by the regulator along the flow
and becomes δ-correlated only at k = 0, where R2,k must
identically vanish.

Because we choose the ansatz (15) to be invariant under the
FDT transformation (14), the regulator terms must also satisfy
this symmetry along the flow. We show in Appendix A that
this implies that R1,k and R2,k satisfy the following relation:

R1,k(x) − R1,k(x,−t) + Ṙ2,k(x) − Ṙ2,k(x,−t) = 0. (22)

The above condition, together with the facts that we choose
R1,k to be causal and R2,k even in time [since it comes in∫

x,x′ φ̃(x)R2,k(x − x′)φ̃(x′)], leads to the following relation:

R1,k(x) = 2�(−t) Ṙ2,k(x). (23)

Notice that the case R2,k(x) ≡ 0, which implies that
R1,k(|x|,t) ∝ δ(t), is not included in the solutions of (23),
which holds only for t �= 0. Equation (23) becomes in Fourier
space

R2,k(q,ω) = R1,k(q,−ω) − R1,k(q,ω)

2iω
, (24)

where the Fourier transform is defined as (using abusively the
same name for the function and its Fourier transform)

f (q,ω) =
∫

x
f (x)e−i(qx−ωt). (25)

Notice that the particular case R2,k ≡ 0 and R1,k(q,ω) inde-
pendent of ω is a solution of (24).

Specific choices of frequency regulators are given in
Sec. VI B, and the results obtained using these regulators, and
their comparison with the case without a frequency regulator,
are shown in Sec. VI C.

V. DERIVATION OF THE RG EQUATIONS

In the previous sections we introduced the NPRG formalism
in a formal way, and we now give more details for the resolution
of the flow equations. Since the formalism is the same for
the multidimensional-spin counterpart of the model A, the
kinetic O(N ) model, we focus in the following on the general
case in which the coarse-grained spin variable φ is now an
N -dimensional vector, denoted φ. We therefore modify the
ansatz for the effective average action 	k to be

	k[ψ,ψ̃] =
∫

x

∑
i

ψ̃i

[
Xk(ρ)(∂tψi − ψ̃i) + ψiU

′
k(ρ)

+ ψi

2
Z′

k(ρ)(∇ψ)2 − Zk(ρ)∇2ψi

−Z′
k(ρ)∇ψi(ψ · ∇ψ) + ψi

4
Y ′

k(ρ)(∇ρ)2

+ 1

2
Yk(ρ)∇ρ∇ψi

]
, (26)

where ρ = ψ2/2. To compute the RG flow of the functions
involved in Eq. (15), we define them in the following way:

U ′
k(ρ) = 1

ψ
FT

(
δ 	k

δψ̃1(x)

∣∣∣∣

=(ψ,0)

)∣∣∣∣∣
ν=0,p=0

, (27)

Zk(ρ) =
[
∂p2 FT

(
δ2	k

δψ̃2(x)δψ2(y)

∣∣∣∣

=(ψ,0)

)]∣∣∣∣∣
ν=0,p=0

, (28)

Xk(ρ) =
[
∂iν FT

(
δ2	k

δψ̃2(x)δψ2(y)

∣∣∣∣

=(ψ,0)

)]∣∣∣∣∣
ν=0,p=0

, (29)

where 
 = (ψ,0) is a 2N constant vector where 
1 = ψ1 = ψ

is a constant field and 
2 = · · · = 
2N = 0, and FT(·) means
the Fourier transform as defined in Eq. (25). Notice that in
the case of the model A, the function Yk does not appear
in the ansatz for 	k , and that the functions Zk and Xk are
evaluated in the ψ1 = ψ , ψ̃1 = ψ̃ direction. In the spirit of the
DE, we evaluate the renormalization functions at zero external
momentum and frequency since it is in this limit that the
approximation is valid. The flow of these functions is then
computed using the Wetterich equation (12) with the initial
conditions U ′

� = V ′, Z� = 1 = X�.
As an example, the flow of U ′

k for the model A (i.e., a
one-dimensional spin) is given by

∂kU
′
k(ρ) = 1

ψ
FT

(
δ

δψ̃
∂k	k

∣∣∣∣

=(ψ,0)

)
(30)

= 1

ψ
FT

(
1

2
∂̃kTr

[∫
ti ,xi

	
(3)
k,ψ̃

Gk

]∣∣∣∣

=(ψ,0)

)
, (31)

where 	
(3)
k,ψ̃

≡ δ	
(2)
k /δψ̃ and ∂̃k ≡ ∂kRk∂/∂Rk . Taking the

appropriate functional derivatives of (15) and evaluating
the result at the uniform and stationary field configuration

(x,t) = (ψ,0), one finds in Fourier space

	
(3)
k,ψ̃

(p,ν; q,ω; ψ) = ψ

(
h3(p,ν; q,ω; ρ) −2X′

k(ρ)

−2X′
k(ρ) 0

)
(32)

with h3 = 2ρ U
(3)
k + 3U ′′

k + Z′
k(p2 + q2 + p · q) − iνX′

k ,
which is a function of ρ. The propagator Gk in Eq. (31) is
obtained by inverting the 2 × 2 matrix (	(2)

k + Rk) evaluated
at 
(x,t) = (ψ,0). One finds

Gk(q,ω; ρ) =
(−R2,k (q2,ω)+2Xk

P (q2,ω)P (q2,−ω)
1

P (q2,−ω)
1

P (q2,ω) 0

)
, (33)

where P (q2,ω) = h(q2,ω) + iωXk with h(q2,ω) =
Zk(ρ)q2 + R1,k(q2,ω) + U ′

k(ρ) + 2ρU ′′
k (ρ).

A. Definition of the dimensionless variables and functions

Since we are interested in the scale-invariant regime, we
introduce the dimensionless and renormalized variables, fields,
and functions:

x̂ = k x, (34a)

t̂ = Z̄kX̄
−1
k k2 t, (34b)

ˆ̃ψ(x̂,t̂ ) = k(2−d)/2Z̄
1/2
k ψ̃(x,t), (34c)

ψ̂(x̂,t̂ ) = k(2−d)/2Z̄
1/2
k ψ(x,t), (34d)

ρ̂(x̂,t̂ ) = k2−dZ̄kρ(x,t), (34e)

Û (ρ̂) = k−dUk(ρ), (34f)
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Ẑ(ρ̂) = Z̄−1
k Zk(ρ), (34g)

X̂(ρ̂) = X̄−1
k Xk(ρ), (34h)

where the running coefficients Z̄k ≡ Zk(ρ0) and X̄k ≡ Xk(ρ0)
are defined at a fixed normalization point ρ0. In the critical
regime, these running coefficients are expected to behave
as power laws Z̄k ∼ k−η(k) and X̄k ∼ k−ηX(k) with η(k) =
−k∂k ln Z̄k and similarly for ηX(k). The anomalous dimension
η and the dynamical exponent z can be expressed in terms
of the fixed point values of η(k) and ηX(k) as η ≡ η∗ and
z ≡ 2 − η∗ + η∗

X.
We furthermore define the dimensionless regulators r1 and

r2 such that

R1,k(q,ω) = yZ̄kk
2r1(y,ω̂) = yZ̄kk

2ρ1(ω̂)r(y), (35)

R2,k(q,ω) = X̄kr2(y,ω̂) = yX̄kρ2(ω̂)r(y), (36)

with y = q̂2 and ω̂ = X̄kZ̄
−1
k k−2ω and where we have as-

sumed for simplicity that the spatial and frequency parts of
the regulators can be factorized, and where r(y) is the usual
momentum regulator, for example an exponential regulator:

r(y) = α

ey − 1
, (37)

where α is a free parameter. The frequency part of the
regulators, ρ1 and ρ2, have to satisfy condition (24), and we
give explicit examples in the following.

Notice already that from the previous definitions, we deduce
the regulator derivatives with respect to k:

k∂kR1,k(q,ω) = −k2Z̄ky[ηr1 + 2y∂yr1

+ (2 − η + ηX)ω̂∂ω̂r1], (38)

k∂kR2,k(q,ω) = − X̄k[ηXr2 + 2y∂yr2

+ (2 − η + ηX)ω̂∂ω̂r2].
(39)

Finally, using dimensionless variables yields a part for the
flow equations that is purely dimensional. Thus, the dimen-
sional parts for the flows of Û ′, Ẑ, and X̂ are, respectively,

k∂kÛ
′|dim = (η − 2) Û ′ + (d + η − 2) ρ̂ Û ′′, (40)

k∂kẐ|dim = η Ẑ + (d + η − 2)ρ̂ Ẑ′, (41)

k∂kX̂|dim = ηX X̂ + (d + η − 2)ρ̂ X̂′. (42)

VI. RESULTS

A. Results without a frequency regulator

In a first step, we consider frequency-independent regula-
tors, which means R2,k = 0 and R1,k(q,ω) = R1,k(q). In this
case, the calculation of the flow equations is much simpler
since the integration over frequency can be done analytically
using residues; see Appendix B for the explicit expression of
the flow equations in this case.

Contrary to the Ising case, in which we keep the full
ρ-dependence of the functions Uk , Zk , and Xk , we perform
in the O(N ) case, on top of the DE, a field expansion
usually called the local potential approximation prime (LPA).

It consists in discarding the function Yk(ρ) and neglecting
the field dependence of Zk(ρ) and Xk(ρ): Zk(ρ) → Z̄k and
Xk(ρ) → X̄k . The dynamical part of their flow equation is
given in Appendix B.

Notice that the flows of Û ′(ρ̂) and Ẑ(ρ̂) do not depend on
X̂(ρ̂) and are the standard equilibrium flow equations of the
Ising model: This is not surprising because with the regulators
chosen above, the model A satisfies for any k the FDT, which is
the hallmark of thermal equilibrium. Consequently, the critical
exponents ν and η for the model A are the same as in the static
Ising model.

Our results are optimized with respect to the parameter α

of the regulator using the principle of minimum sensitivity
(PMS) [39–41]: In the exact theory, the critical exponents do
not depend on the unphysical parameter α, and we therefore
select the values of this parameter where the exponents are
stationary; see Fig. 1 for model A in d = 3.

The numerical integration of the flow equations (B1)–(B3)
for the model A yields the results displayed in Table I for d = 3
together with the results coming from perturbative field theory
(PFT), Monte Carlo (MC) simulations, and previous NPRG
works where the field dependence of the functions Zk and Xk

was neglected. For d = 2, the results are given in Table II.
Similarly, for N = 2 and 3, the integration of Eqs. (B4)–

(B6) yields the results displayed in Table III. Note that an
expansion of these equations in ε′ = d − 2 yields η = ηX =
ε′/(N − 2) and therefore a trivial dynamical exponent z = 2
in d = 2 for N > 2.

Finally, notice in the plots of Fig. 1 that stationarity yields
values of α that are close to each other for both η and ν:
αη,PMS � αν,PMS � 2, whereas the PMS for z is obtained when
αz,PMS � 0.6. The internal consistency of the PMS relies on
the fact that the values of an exponent computed either at
its stationary point or at the stationary points of the other
exponents remain close. This is not the case here since we
find, for instance, that η(α = αz,PMS) = 0.0499, which differs
by about 13% from its PMS value, whereas η(α = αν,PMS) and
ν(α = αη,PMS) differ from their PMS values by less than 1%.
This is a signal that the exponent z is poorly determined and
it is therefore mandatory to study the impact of the frequency
dependence of the regulator on this exponent.

B. Specific choices of frequency regulators

We now focus on regulating the frequencies in the flow
equations. We have discussed the general constraints a fre-
quency regulator should fulfill in Sec. IV, and we present
here the three different regulators—all suited for regulating
large frequencies but not equally efficient—we will use for
computing z.

A convenient choice for the regulator in direct space is the
following:

R1,k(x,t) = 1

τk

�(−t) et/τk rk(x), (43)

where rk(x) is the space regulator (usually exponential) whose
Fourier transform is given by Eq. (37), and τk = β X̄kZ̄

−1
k k−2

with β a dimensionless free parameter that we use for
optimization. We display the time-dependent part ρ1(t) of
this regulator in Fig. 2. The choice of this first regulator is
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η

0.045

0.051

α
1 3 5

(a)

ν

0.618

0.626

α
1 3 5

(b)

z

2.024

2.032

α
1 3 5

(c)

FIG. 1. Values of the critical exponents η (a), ν (b), and the
dynamical exponent z = 2 + ηX − η (c) in d = 3 for the frequency-
independent regulator R1,k(q,ω) = R1,k(q), R2,k(q,ω) = 0 and dif-
ferent values of the regulator parameter α in Eq. (37). The PMS value
is reached for α � 2 for the two static exponents η and ν and for
α � 0.6 for the dynamical exponent z.

motivated by three main reasons: (i) it is causal and satisfies
relation (23), (ii) it decays sufficiently fast in time so that
the noise correlations (21) are not modified too drastically,
and (iii) its Fourier transform can be computed analytically
and is a simple rational fraction. Indeed, using dimension-
less frequencies, the Fourier transforms of their frequency

TABLE I. Critical exponents of model A in d = 3 from different
methods. In the first row, (a) without frequency regulator, (b) using
the first frequency regulator defined by Eq. (43), (c) second regulator
(46), and (d) third regulator (47). All these results are obtained at
the stationary points, αPMS. The exponent z in the NPRG row was
obtained in [37], where the field dependence of the functions Zk and
Xk was neglected. PFT stands for perturbative field theory methods,
MC for Monte Carlo simulations, and CBS for conformal bootstrap
methods.

Reference ν η z

This work 0.628 0.0443 (a) 2.032, (b) 2.024
(c) 2.024, (d) 2.023

NPRG 0.6281 [42] 0.0443 [42] 2.14 [37]
PFT [43] 0.6304(13) 0.0335(25)
MC [44] 0.63002(10) 0.03627(10)
CBS [45] 0.629971(4) 0.036298(2)
PFT [46] 2.0237(55)
MC [47] 2.032(4)

part read

ρ1(ω̂) = i

i − βω̂
, (44)

ρ2(ω̂) = β

1 + β2ω̂2
. (45)

When β → 0, we retrieve the usual nonregulated in time
theory. Now that we have specified the frequency and space
parts of the regulators, we check that they both fulfill NPRG
requirements: in addition to a sufficiently fast decay, they
should also satisfy some limits when k → 0 and k → �:
R1,k(q,ω) and R2,k(q,ω) should both vanish when k → 0
in order to retrieve the original theory. In the limit k → �,
we design R1,k such that R1,k(q,ω) ∼

k→�
�2 � 1: the system

acquires a large “mass” that freezes the fluctuations. Finally,
one finds R2,k(q,ω) ∼

k→�
αβ, which means the initial noise

correlation is modified, which is harmless for the computation
of universal quantities.

To compare the results obtained with different frequency
regulators, we have engineered two other regulators in addition

TABLE II. Critical exponents of model A in d = 2 from different
methods. In the first row, (a) without the frequency regulator, (b)
using the frequency regulator defined by Eq. (43), (c) second regulator
(46), and (d) third regulator (47). All these results are obtained at the
stationary points, αPMS. We also display results for the dynamical
exponent z coming from perturbative field theory (PFT) and Monte
Carlo (MC) simulations.

Reference ν η z

This work 1.13 0.29 (a) 2.28
(b) 2.16, (c) 2.15, (d) 2.14

Exact 1 0.25
PFT [48] 2.093
MC [49] 2.1667(5)
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TABLE III. Critical exponents of the kinetic O(N ) model in
d = 3 for different values of N and from different methods. The
exponents η and z have been computed in this work using the LPA’
(see Sec. VI for a definition). In the first two rows, (a) without
the frequency regulator, (b) using the frequency regulator defined
by Eq. (43), and (c) the second regulator (46). All these results
are obtained at the stationary points, αPMS. The static exponents η

and ν for the perturbative field theory (PFT) come from [50], the
dynamic exponent z is computed using the value of η from [50],
and the relation z = 2 + cη from [51], which is a relation obtained
perturbatively at order ε4, with ε = 4 − d . Very few MC studies exist
for the determination of z. More details on the determination of this
exponent can be found in [52]; see also Ref. [53] for a review of the
determination of the static exponents.

Reference ν η z

This work (N = 2) 0.70 0.039 (a) 2.029
(b) 2.024, (c) 2.023

This work (N = 3) 0.75 0.037 (a) 2.025
(b) 2.021, (c) 2.021

PFT (N = 2) 0.6704(7) 0.0349(8) 2.026
PFT (N = 3) 0.7062(7) 0.0350(8) 2.026

to this simple first one; see Fig. 2 for a plot of their time-
dependent part.

The second regulator we propose is defined as

R1,k(x,t) = rk(x)

2τk

×
{

(t + 2τk)/τk if − 2τk � t � 0,

0 otherwise.

(46)

Notice that its Fourier transform can also be computed
analytically. Since singularity in the time domain means slow
decay in the frequency domain, the more singular in t , the
slower the decay of ρ1(ω̂) at large ω̂. This second regulator
has two singularities (at t = 0 and t = −τk), and we therefore
expect it to be less effective than the first one.

ρ
1
(t

)

0

1/τk

t
−3 τk −τk

First regulator

Second regulator

Third regulator

FIG. 2. Typical shape of the time-dependent part ρ1(t) of the three
regulators studied: the first regulator is defined in Eq. (43), the second
in (46), and the third in (47).

Finally, the third frequency regulator we consider is the
following:

R1,k(x,t) = A

τk

�(−t)e−(1+t/τk )2+τk/t rk(x), (47)

where A is a constant such that the area under its curve is
1, in order to retrieve a Dirac function as β → 0. This third
regulator is infinitely differentiable at t = 0, and we therefore
expect it to be sharper than the two previous regulators in the
frequency domain. On the other hand, the computation of its
Fourier transform has to be done numerically.

Finally, we insist on the fact that enforcing causality along
the flow is not an obvious task: Although choosing a regulator
that is causal [R1,k(x,t) ∝ �(−t)] seems at least necessary
to preserve causality, one should check that it also preserves
causality all along the flow [6]. As we explain in Appendix C,
causality means that the poles of the response function

χ (ω) = 1

P (q2,−ω)
= 1

h(q2,−ω) − iωXk

, (48)

where h(q2,ω) = Zk(ρ)q2 + R1,k(q2,ω) + U ′
k(ρ) + 2ρU ′′

k (ρ),
must lie in the lower-half of the complex ω-plane. When
R1,k(q2,ω) is a (simple) rational fraction, as is the case for
the first regulator defined by Eq. (43), it is easy to check
that the causality of the response function is enforced all along
the flow. For the second regulator (46) and the third regulator
(47), we only checked it for the initial condition and at the
fixed point of the flow.

We also stress that if R1,k(q2,ω) is a rational fraction, one
can hope to design “by hand” a regulator for which all the
poles of the response function have a negative imaginary part.
However, if one wishes to build a regulator that decays faster
than a power law, then the only remaining option is to construct
it in direct space and afterward check the decay in Fourier
space.

C. Results with a frequency regulator

In the presence of the three regulators defined, respectively,
in Eqs. (43), (46), and (47), the flow equations of Û ′ and Ẑ

remain identical to those at equilibrium (B1)–(B2) since the
FDT is valid all along the flow. On the other hand, the flow of
X̂ now depends on β and is more complicated than without a
frequency regulator. For the first regulator defined by Eq. (43),
the integrals over the frequencies in the flow equation can
still be performed analytically since its Fourier transform is a
simple rational fraction in ω̂. For the two other regulators, the
integrals over frequencies must be computed numerically.

We have numerically integrated the new flow equations for
different values of α and β in order to compute the critical
exponents at the stationary point in the (α,β) plane. For each
value of β, we find a value of α where z is extremal. This
yields a curve z(α) (see Fig. 3) that shows a maximum that is
therefore the stationary point in the (α,β) plane. One notices
that the PMS value is now obtained for αz,PMS � 1.5 (instead
of 0.6 in the case without a frequency regulator), which is
closer to the PMS value of η and ν (obtained at α � 2). More
precisely, we find, for instance, for the model A in d = 3 that
η(α = αz,PMS) differs by about 1% from its PMS value, and
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z

2.020

2.024

α
0.5 1.5 2.5 3.5

FIG. 3. Values of the critical exponent z in d = 3 for the flow
regulated in frequencies for different values of the regulator parameter
α. For each value of α, the value of β has been chosen such that z

is extremal. The three curves are obtained from top to bottom by
the regulators defined in Eqs. (43), (46), and (47). The PMS value is
reached for α � 1.5 for the three regulators.

ν(α = αz,PMS) and z(α = αν,PMS) differ from their PMS values
by less than 1%.

In light of the above, it is clear that the frequency-
independent regulators are simply a particular class of regula-
tors. In our examples, they correspond to the limit β → 0 of
the three frequency regulators studied. Their main advantage
is their simplicity since there is only one regulator, which lies
in the φ̃ − φ direction and also because the frequency integrals
can be performed analytically in the flow equations. However,
we can see in Fig. 4 that from the point of view of the PMS,
the class of regulators with β = 0 does not correspond at all
to an extremum in the β direction, even for the value α = 0.6,
which is optimal at β = 0. Moreover, the difference between
αz,PMS � 1.5 and α = 0.6 is not only quantitatively important,
it is also qualitatively important because it makes the PMS a
self-consistent criterion for optimizing the critical exponents.
It is remarkable and reassuring that this latter value of αz,PMS,
which has a meaning per se because it can be compared to
αη,PMS � αν,PMS � 2, is extremely stable when changing the

z

2.024

2.032

β
0.2 0.6 1.0

FIG. 4. Exponent z for N = 1 in d = 3 as a function of the
parameter β of the regulator (43). This curve is obtained for α = 0.6,
which corresponds to the stationary point of z at β = 0.

shape of the regulator; see Figs. 2 and 3. Finally, we find as
expected that the accuracy of the optimized value of z − 2
found in this work compared to the average of the other
estimates, z − 2 � 0.028, is comparable to the accuracy of
the optimized value of η compared to the world’s best value,
that is, is around 15%; see Table I. Together with the stability
of our results, this is a strong indication that the regulators we
study here are almost optimal at this order of the DE.

VII. CONCLUSION

We have engineered in this article regulators of the NPRG
flow equations acting on frequencies, a feature that we believe
can be of tremendous importance if we aim to solve generic
out-of-equilibrium problems with the derivative expansion.
Causality, of course, has to be taken care of and is the main
preoccupation when designing such a regulator. Therefore,
contrary to the space regulator, which can be engineered
directly in Fourier space, it is convenient to think first in
direct space for a frequency regulator to enforce causality. For
systems that relax toward equilibrium, introducing a second
regulator in the φ̃ − φ̃ direction connected to the other one in
the φ̃ − φ direction is mandatory to preserve the time-reversal
symmetry all along the flow, a feature that is surely desirable
and that, at least, simplifies the formalism.

The next step will be to implement frequency regulators
for generic out-of-equilibrium models not displaying such a
strong constraint as the FDT. In the previous NPRG studies
of the directed percolation universality class, only results at
the LPA’ were reported [11,54]. Improving these results by
going at order 2 of the DE surely requires the use of a
frequency regulator. The parity-conserving generalized voter
model is another candidate since the NPRG results are not
fully satisfactory for this model; see [24] for an exact result
that disagrees with the conclusions of [9] obtained within the
LPA without frequency regulators.
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APPENDIX A: RELATION BETWEEN R1 AND R2

We show here that the invariance of the action under
transformation (14) enforces constraints on R1 and R2. Let
us define

�S1 =
∫

x,x′
φ̃(x,t)R1(x ′ − x,t ′ − t)φ(x ′,t ′), (A1)

�S2 =
∫

x,x′
φ̃(x,t)R2(x ′ − x,t ′ − t ′)φ̃(x ′,t ′), (A2)

in which, for notational convenience, we drop in the following
the spatial dependence in the different terms. After trans-
forming the fields by (14), �Si[φ,φ̃] become �Si[φ′,φ̃′] ≡
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�S ′
i[φ,φ̃], which read

�S ′
1 =

∫
t,t ′

φ̃(t)R1(t − t ′)φ(t ′) −
∫

t,t ′
φ̇(t)R1(t ′ − t)φ(t ′),

(A3)

�S ′
2 =

∫
t,t ′

φ̃(t)R2(−t ′ + t)φ̃(t ′) −
∫

t,t ′
φ̃(t)[R2(−t ′ + t)

+R2(t ′ − t)]φ̇(t ′) +
∫

t,t ′
φ̇(t)R2(−t ′ + t)φ̇(t ′).

(A4)

In �S ′
2 we notice that the first term gives back �S2, and the

third term is symmetric in t and t ′ and can be rewritten as

1

2

∫
t,t ′

φ̇(t)[R2(−t ′ + t) + R2(t ′ − t)]φ̇(t ′). (A5)

The invariance of the action under transformation (14) yields
the equality �S ′

1 + �S ′
2 = �S1 + �S2, which reads∫

t,t ′
φ̃(t)[R1(−t ′ + t) + Ṙ2(−t ′ + t) − Ṙ2(t ′ − t)

−R1(t ′ − t)]φ(t ′) +
∫

t,t ′
φ̇(t)

(
−R1(−t ′ + t)

+ 1

2
[Ṙ2(−t ′ + t) − Ṙ2(t ′ − t)]

)
φ(t ′) = 0, (A6)

which should be valid for all fields φ and φ̃. To deduce an
identity on the integrand of (A6), we first need to integrate it
by parts and symmetrize it with respect to t and t ′. This yields
two equations that are in fact redundant, and hence we deduce
the following sufficient condition for R1 and R2:

R1(t) − R1(−t) + Ṙ2(t) − Ṙ2(−t) = 0. (A7)

APPENDIX B: FLOW EQUATIONS

One can show for the model A that the dynamical parts of
the dimensionless renormalization functions read [55]

∂t Û
′|dyn = −vd

∫
y

yd/2 f s

h2
, (B1)

∂t Ẑ|dyn = 2vd

∫
y

yd/2 s

h2

[
2ρ̂f 2

h2

(
4

d

yh′2

h
− h′ − 2

d
yh′′

)

+ 4ρ̂Ẑ′ f
h

(
1− 2

d

yh′

h

)
+2ρ̂

d
(Ẑ′)2 y

h
− Ẑ′

2
−ρ̂Ẑ′′

]
,

(B2)

∂t X̂|dyn = vd

∫
y

yd/2 s

h2

(
8ρ̂X̂′ f

h
− 3

f 2

h2
ρ̂X̂ − X̂′ − 2ρ̂X̂′′

)
,

(B3)

where ∂t ≡ k∂k , v−1
d = 2d+1πd/2	(d/2), ρ̂ = ψ̂2/2,

h(y,ρ̂) = y[Ẑ(ρ̂) + r(y)] + Û ′(ρ̂) + 2ρ̂Û ′′(ρ̂), f (y,ρ̂) =
yẐ′(ρ̂) + 3Û ′′(ρ̂) + 2ρ̂Û ′′′(ρ̂), and s(y) = −ηr(y) − 2yr ′(y).
One notices immediately that X̂ does not contribute to the

flows of Û ′ and Ẑ, which are the standard flows of the static
Ising model.

For the dynamical O(N ) model, for simplicity we only
consider the local potential approximation prime (LPA’) of
the derivative expansion, which means we only retain U ′

k as a
function of ρ, and Zk and Xk are mere numbers. While the flow
of the dimensional part of the dimensionless renormalization
functions is still given by Eqs. (40)–(42), the flow of the
dynamical part is given this time by the following equations:

∂t Û
′|dyn = −vd

∫
y

yd/2s

(
3Û ′′ + 2ρ̂Û (3)

h2
L

+ (N − 1)Û ′′

h2
T

)
,

(B4)

∂t Ẑ|dyn = −8vd

∫
y

yd/2sρ̂Û ′′
[

hy

h2
Lh2

T

+ 2yhyy

dh2
Lh2

T

− 2yh2
y

dh2
Lh2

T

(
1

hT

+ 1

hL

)]∣∣∣∣∣
ρ̂=ρ̂0,k

, (B5)

∂t X̂|dyn = −4vd

∫
y

yd/2sρ̂Û ′′2
(

h2
L + 4hLhT + h2

T

h2
Lh2

T (hL + hT )2

)∣∣∣∣
ρ̂=ρ̂0,k

,

(B6)

where s(y) = −ηr(y) − 2yr ′(y), hL = y[r(y) + 1] + Û ′ +
2ρ̂Û ′′, hT = y[r(y) + 1] + Û ′, hy = 1 + r(y) + r ′(y), and
hyy = 2r ′(y) + yr ′′(y). Notice that since we are working at
the LPA’, the flow equations for Ẑ and X̂ are evaluated at the
(running) minimum of the potential ρ0,k . Once again, X̂ does
not contribute to the flows of Û ′ and Ẑ, which are the standard
flows of the equilibrium O(N ) model at the LPA’.

APPENDIX C: CAUSALITY AND KRAMERS-KRONIG
THEOREM

The linear-response function χ (t,t ′) is defined to be the
variation of the mean value of the field φ at time t caused by
the variation of the external source J coupled to φ at time t ′.
Mathematically, it reads

χ (t,t ′) = 〈δφ(t)〉
δJ (t ′)

∣∣∣∣
J→0

. (C1)

Because of time translation invariance, it is a function of t − t ′
only, and we may write χ (t,t ′) = χ (t − t ′). In the MSRDJ
formalism (also called the response-function formalism), the
response function reads

χ (t,t ′) = 〈φ̃(t ′)φ(t)〉, (C2)

and its Fourier transform χ (ω) is simply given by the upper-
right element of the propagator matrix Gk ,

χ (ω) = 1

P (q2,−ω)
= 1

h(q2,−ω) − iωXk

, (C3)

with h(q2,ω) = Zk(ρ)q2 + R1,k(q2,ω) + U ′
k(ρ) + 2ρU ′′

k (ρ).
Causality imposes χ (t < 0) = 0, which means that χ (ω) must
be an analytic function of ω in the upper part of the complex
plane. In other words, the poles of χ (ω) must have a negative
imaginary part.
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Let us add that the Kramers-Kronig theorem provides an alternative translation of the causality of the response function.
Indeed, the fact that χ (t < 0) = 0 yields the following equalities for the Fourier transform χ (ω), called the Kramers-Kronig
relations [2]:

Re[χ (ω)] = 1

π
P

∫
dω′ Im[χ (ω′)]

ω′ − ω
, (C4)

Im[χ (ω)] = − 1

π
P

∫
dω′ Re[χ (ω′)]

ω′ − ω
, (C5)

where P denotes the Cauchy principal value of the integral.
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