
PHYSICAL REVIEW E 96, 012149 (2017)

Nonuniversality in the erosion of tilted landscapes
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The anisotropic model for landscapes erosion proposed by Pastor-Satorras and Rothman [R. Pastor-Satorras
and D. H. Rothman, Phys. Rev. Lett. 80, 4349 (1998)] is believed to capture the physics of erosion at intermediate
length scale (�3 km), and to account for the large value of the roughness exponent α observed in real data at this
scale. Our study of this model—conducted using the nonperturbative renormalization group—concludes on the
nonuniversality of this exponent because of the existence of a line of fixed points. Thus the roughness exponent
depends (weakly) on the details of the soil and the erosion mechanisms. We conjecture that this feature, while
preserving the generic scaling observed in real data, could explain the wide spectrum of values of α measured
for natural landscapes.
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I. INTRODUCTION

Landscapes are known to exhibit scale invariance [1], and
Mandelbrot even considered the stretch of a coastline to
introduce his notion of fractal dimension [2]: seen from far
away, the coast displays bays and peninsulas, and reveals more
and more sub-bays and subpeninsulas as one looks closer and
closer at it. The self-similarity of branching rivers networks—
where brooks merge into creeks that become streams flowing
to form rivers—is also a well-known fact in geomorphology,
and led to several phenomenological scaling laws [3–5].

Our interest in the following will be erosional landscapes
such as mountain ranges, that are also scale invariant [6].
This scale invariance is made obvious when one studies the
roughness of a surface, given by the height-height correlation
function:

C(r) =
√

〈|h(x + r) − h(x)|2〉, (1)

where 〈·〉 denotes a spatial averaging (over x). This correlation
function is shown in various empirical measurements to scale
as C(r) ∼ |r|α , where α is known as the roughness exponent.
Although the scaling behavior of erosional landscapes is
a well-documented fact (from field measurements [7–12],
laboratory experiments [13,14], or numerical simulations
[15,16]), an unambiguous and unique value of the roughness
exponent α remains elusive. In fact, from the large amount of
experimental data available, two features can be extracted: (i)
the roughness exponent has a large variability, and it seems to
span the whole range between α � 0.2 and α � 1, and (ii) there
is a tendency to find larger values of the roughness exponent
(0.70 � α � 0.95) at intermediate length scales (�3 km),
and smaller values (0.20 � α � 0.60) at larger length scales
[7,12,17].

Because of the complexity and variety of the erosion
mechanisms (rainfalls and storms, freezing events and changes
in temperature, chemical erosion, landslides and avalanches,
etc. [18]), a model stemming from these mechanisms is out
of reach. However, the scale invariance displayed by these
systems suggests that the intermediate and large scale physics
of these systems is, at least to a large extent, independent of
the smallest scale details, and that a simple phenomenological
model that would capture the relevant elements could be

sufficient to reproduce this power-law behavior and predict
the value of the roughness exponent.

So far, some necessary elements for this self-similarity to
emerge have already been identified [19]. First, the flowing
of eroded material by diffusion of the soil has of course to
be taken into account. In some simple cases such as river
deltas, diffusion in itself can be sufficient to explain the delta
front profile [20]. However, the nontrivial scaling property
of the correlation function C(r) in eroding landscapes is not
reproduced with this sole ingredient. Then, a phenomenolog-
ical noise term taking into account most of the underlying
stochastic phenomena contributing to the erosion must be
included [19,21]. Combining diffusion and noise, one gets the
Edwards-Wilkinson noisy diffusion equation. Although this
equation yields scale invariance in d = 1 with a nonvanishing
value of α, this property is lost in larger dimensions since α = 0
in this model for all d > 1 [22]. Finally, some nonlinearity in
the model is mandatory to explain the occurrence of nontrivial
values of α [6,23]. The combination of these three elements is
minimal to get scaling features in an erosive model.

Amongst the equations displaying the features highlighted
above, the Kardar-Parisi-Zhang (KPZ) equation stands out of
the crowd [24]. First derived and famous in the context of
surface growth, the KPZ equation is also thought to describe
isotropic erosion of landscapes [19], and predicts α � 0.4 in
d = 2 [25,26].

However, although a description of erosion by the KPZ
equation seems satisfactory for large scale landscapes, where
erosion is indeed isotropic and where the KPZ prediction for
the roughness exponent α seems to meet the experimental data
(for which 0.20 � α � 0.60), it is not the case for intermediate
length scales, where erosion occurs along a preferred direction
(the slope of the mountain), and the KPZ equation—which is
isotropic—fails to capture this important additional ingredient
and underestimate the roughness exponent (which is of order
0.70 � α � 0.95) [1]. In addition, the KPZ equation is also
nonconservative, a feature that is not realistic for smaller scale
erosion [21].

To bridge this gap, Pastor-Satorras and Rothman suggested
a nonlinear yet conservative description, and to add anisotropy
on top of the three main ingredients discussed above [27,28].
Their perturbative renormalization group (RG) analysis that
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retains only one coupling constant yields exponents in surpris-
ingly good agreement with field measurements. Unfortunately,
a recent paper by Antonov and Kakin [29] revealed a mistake
in their analysis, showing that there is not a single but
infinitely many relevant coupling constants in the theory,
which invalidates their results. Antonov and Kakin are however
unable to predict the value of the roughness exponent α, but
they suggest that the correct model has a line of fixed points,
and therefore possibly a continuous range of values for α

if this line is attractive, which they cannot show. Moreover,
Antonov and Kakin’s paper is focused only on a single type
of noise (the isotropic noise, which we describe in more
details in the following), while Pastor-Satorras and Rothman
studied in addition a more interesting model involving a static
noise. In this second model, it is not known whether a line of
fixed points also exists.

In this paper, we tackle the anisotropic erosion model
with two different kinds of noise using the nonperturbative
RG (NPRG) [30] (for an introduction, see [31,32]), which is
perfectly suited for studying a model involving infinitely many
coupling constants, since the NPRG is functional in essence.
We do agree with Antonov and Kakin about the infinite number
of coupling constants involved in the model and with the fact
that any truncation retaining only a finite number of them
yields wrong predictions in the case of the isotropic noise. We
show in addition that this conclusion holds for the two types
of noise.

Furthermore, we are able to integrate numerically the flow
equation, and find that in the case of the static noise, there
indeed exists for this model an interval of stable fixed points
in the case of physical interest d = 2. This interval shrinks
to a single fixed point, the trivial Edwards-Wilkinson fixed
point, in the case of an isotropic noise. This result is of course
in marked disagreement with those of [27,28] and in partial
disagreement with those of [29] in which it is argued that the
isotropic noise case could yield nontrivial exponents.

Moreover, although we are not able to predict whether
the whole line of fixed points can be reached from realistic
initial conditions, the very existence of this line of fixed points
could be a first step to explain the large variability observed
in the experimental values of the roughness exponent α. Let
us also emphasize that, despite the very simple formulation of
this erosion model, its RG equation displays very interesting
features that we describe in the following.

II. ANISOTROPIC EROSION MODEL

We briefly recall the main features of the model defined in
[28]. Our aim is to describe the erosion—that is the evolution of
the height h(�x,t)—of a surface with a fixed mean tilt (e.g., the
slope of a mountain) which introduces an intrinsic anisotropy
in the model. This preferred direction is determined by a unit
vector that we denote �e‖. Thus the d-dimensional horizontal
position �x can be decomposed as �x = �x⊥ + x‖�e‖ with �x⊥ ·
�e‖ = 0, and �x⊥ is therefore a (d − 1)-dimensional vector. We
also define the derivative in the slope direction as ∂‖ ≡ ∂/∂x‖
and in the transverse direction as ∇⊥ ≡ (∂/∂x⊥,i) with i =
1 . . . (d − 1).

The equation derived by Pastor-Satorras and Rothman in
[27,28] to describe the evolution of the height profile is a

minimal Langevin equation that takes into account diffusion,
nonlinearity, noise, and anisotropy. It reads

∂th(x)=ν‖∂2
‖h(x) +ν⊥∇2

⊥h(x) +∂2
‖B(h(x)) +ξ (x), (2)

where x ≡ (�x,t), the function B(h) is an odd function of
the height h and represents the nonlinearity, and ξ is a
stochastic noise. As usual, the above Langevin equation has
to be understood in the Itō sense. The nonlinear function B(h)
takes into account the fact that the flow of water carrying the
soil—and thus responsible for the erosion—increases with the
slope, and is therefore stronger in the downhill direction �e‖.
The noise probability distribution P (ξ ) is

P (ξ ) ∝ e− 1
4D

∫
x,t ′ W (t−t ′)ξ (x,t)ξ (x,t ′), (3)

with
∫

x ≡ ∫
ddx dt (notice that we now drop the arrow above

the spatial vector �x to alleviate the notation), and the noise
correlations are

〈ξ (x)ξ (x′)〉 = 2D W (t − t ′)δd (x − x ′), (4)

where W (t − t ′) = 1 for a static noise and W (t − t ′) = δ(t −
t ′) for an isotropic noise. In this model, the choice of the noise
is paramount [21], since different noises will lead to different
universality classes [16], different critical dimensions, and
therefore either to a trivial (α = 0) or nontrivial roughness
exponent in d = 2 as we will see in the following. A static
(or quenched) noise W (t − t ′) = 1 expresses the fact that
different types of soil (with various erodibility) can be
originally present, whereas a thermal (or isotropic) noise
W (t − t ′) = δ(t − t ′) is more suited for mimicking the action
of rainfalls over the eroding land. As will be shown in the
following, the former leads to a nontrivial roughness exponent
in d = 2, whereas the latter results in smooth landscapes.

From the Langevin equation (2), an equivalent field theory
can be derived using the Martin–Siggia–Rose–de Dominicis–
Janssen (MSRDJ) approach [33–35]. In this formalism, the
mean value (over the different realizations of the noise) of a
given observable O[h] is given by

〈O[h]〉ξ =
∫

DhDh̃ e−S[h,h̃]O[h], (5)

with the action

S[h,h̃] =
∫

x
h̃(∂th − ν‖∂2

‖h − ν⊥∇2
⊥h − ∂2

‖B(h))

−
∫

x,t,t ′
W (t − t ′)h̃(x,t)h̃(x,t ′). (6)

Notice that within this formalism the functional integral over
h̃ (which is called the “response” field) is performed along the
imaginary axis, whereas h is a real field. Notice also that up to
a rescaling of the time t , the longitudinal direction x‖, and of
the fields h̃ and h, one can set ν‖ = ν⊥ = D = 1, which is the
normalization we keep in the following and which simplifies
the symmetry analysis.

III. NONPERTURBATIVE RG

In this section we describe briefly the implementation of
the nonperturbative RG (NPRG) formalism in the context of
a nonequilibrium model [36,37]. As in equilibrium statistical
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physics, the starting point of the field theory is the analog of
the partition function associated with the previous action S
defined in Eq. (6), and which reads

Z[j,j̃ ] =
∫

DhDh̃ e−S+∫
x J (x)T ·H (x), (7)

where we use a matrix notation and define the following
vectors:

H (x) =
(

h(x)

h̃(x)

)
, J (x) =

(
j (x)

j̃ (x)

)
. (8)

As in equilibrium, the generating functional of the connected
correlation and response functions is W[J ] = logZ[J ]. We
also introduce its Legendre transform, the generating func-
tional of the one-particle irreducible correlation functions
�[�], where � = 〈H 〉.

In order to determine the effective action �, we apply the
NPRG formalism and write a functional differential equation
which interpolates between the microscopic action S and the
effective action �. The interpolation is performed through a
momentum scale k and by integrating over the fluctuations
with momenta |q| > k, while those with momenta |q| < k

are frozen. At scale k = 	, where 	 is the ultraviolet cutoff
imposed by the (inverse) microscopic scale of the model (e.g.,
the lattice spacing), all fluctuations are frozen and the mean-
field approximation becomes exact; at scale k → 0, all the
fluctuations are integrated over and the original functional Z
is recovered. The interpolation between these scales is made
possible by using a regulatorRk(x), whose role is to freeze-out
all the fluctuations with momenta |q| < k. This regulator is
introduced by adding an extra term to the action and thus
defining a new partition function Zk:

Zk[j,j̃ ] =
∫

DhDh̃ e−S−
Sk+
∫

x J (x)T ·H (x), (9)

with


Sk = 1

2

∫
x,x′

H (x)T · Rk(x − x′) · H (x′), (10)

where Rk is a 2 × 2 regulator matrix, depending both on space
and time, and whose task is to cancel slow-mode fluctuations.
Let us first recall that the MSRDJ formalism together with
Itō’s prescription does not allow for a term in the action not
proportional to the response field h̃. This implies that there is
no cutoff term in the h − h direction, and the regulator matrix
defined in Eq. (10) can be written in full generality as

Rk(x) =
(

0 R1,k(x,t)

R1,k(x,−t) 2R2,k(x,t)

)
, (11)

where the minus sign in R1,k(x,−t) is a consequence of 
Sk

being written in a matrix form and the factor 2 in front of R2,k

has been included for convenience.
In the following, we only consider a space regulator, that

is, a regulator which is trivial in the time direction, and we
also discard the noise modification R2,k (see [38] for further
discussion of a frequency regulator), such that

Rk(x) =
(

0 Rk(x)δ(t)

Rk(x)δ(t) 0

)
. (12)

In this paper we use the � regulator which allows for an
analytic computation of the integrals over momentum, and
which is defined in Fourier space as

Rk(q) = (k2 − q2)�(k2 − q2), (13)

where �(q) is the Heaviside step function [�(q < 0) = 0 and
�(q � 0) = 1]. Notice that we have kept the same name for
the function and its Fourier transform, which is defined as

f (q) ≡
∫

x
f (x) e−i(qx−ωt). (14)

We also define the effective average action �k as a modified
Legendre transform of Wk[J ] = logZk[J ] [39],

�k[�] + Wk[J ] =
∫

x
J T · �

− 1

2

∫
x,x′

�(x)T · Rk(x − x′) · �(x′),

(15)

in such a way that �k coincides with the action at the
microscopic scale (�k=	 = S) and with � at k = 0 (�k=0 =
�), when all fluctuations have been integrated over. The
evolution of the interpolating functional �k between these two
scales is given by the Wetterich equation [39,40]:

∂k�k[�] = 1

2
Tr

∫
x,x′

∂kRk(x − x′) · Gk[x,x′; �], (16)

where Gk[x,x′; �] ≡ [�(2)
k + Rk]−1[x,x′; �] is the full, field-

dependent, propagator and �
(2)
k is the 2 × 2 matrix whose

elements are the �
(2)
k,ij defined such that

�
(n)
k,i1,...,in

[xi ; �] = δn�k[�]

δ�i1 (x1) · · · δ�in(xn)
. (17)

The Wetterich equation (16) represents an exact flow equa-
tion for the effective average action �k , which we solve
approximately by restricting its functional form. We use in the
following the derivative expansion (DE), stating that instead
of following the full �k along the flow, only the first terms
of its series expansion in space and time derivatives of � are
considered. This method is very efficient and has led both at
and out of equilibrium to many accurate and original results
[41–49]. The terms retained in this derivative expansion have
to be consistent with the symmetries of the action S, and we
therefore discuss them before giving an explicit ansatz for �k .

IV. SYMMETRIES

In order to find a meaningful and simple ansatz for
the effective average action �k , we start by studying the
symmetries of the action. We consider the following shift-
gauged symmetry:

h̃′(x) = h̃(x) + ε(x⊥,t), (18)

where ε is an arbitrary infinitesimal function. The action (6) is
not strictly invariant under the transformation (18), but since
the variations of the action following this transformation are
linear in the fields, it also yields useful Ward identities [43,50].
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Under transformation (18), the integral (9) remains unchanged,
which yields∫

x

[
j̃ ε − ε∂t 〈h〉 + ε∇2

⊥〈h〉 −
∫

x′
εRk〈h〉

]

+ 2
∫

x,t ′
W (t − t ′)ε(x⊥,t)〈h̃(x,t ′)〉 = 0. (19)

Notice that we have integrated by parts the terms involving
a derivation with respect to x‖, and that the boundary terms
that result from this integration by parts vanish because of the
symmetry x‖ → −x‖.

Then, using the definition (15) of the modified Legendre
transform to eliminate the external field j̃ , and using the
fact that, by definition, 〈h〉 = φ and 〈h̃〉 = φ̃, the previous
expression becomes∫

x

[
δ�k

δφ̃
− ∂tφ + ∇2

⊥φ + 2
∫

t ′
W (t − t ′)φ̃(x,t ′)

]
ε(x⊥,t) = 0.

(20)

Since this equality is true for any function ε(x⊥,t), it means that
the Fourier transform [defined in Eq. (14)] of the term inside
the brackets vanishes at q‖ = 0. Consequently, at q‖ = 0, the
functional

�k −
∫

q
φ̃(−q)[−iω + q2

⊥]φ(q) +
∫

q
W (ω)φ̃(−q)φ̃(q)

(21)

vanishes under transformation (18). It finally means that only
the terms ∂‖h and ∂‖B(h) [which are invariant under (18)] are
renormalized, while the terms

∫
φ̃∂tφ,

∫
φ̃∇2

⊥φ, and
∫

W (t −
t ′)φ̃(x,t)φ̃(x,t ′) are not. Thus, at lowest order in the space
and time derivatives, the most general ansatz for the effective
average action �k[φ,φ̃] reads

�k[φ,φ̃] =
∫

x,t

φ̃(x,t)[∂tφ − ∇2
⊥φ − ∂2

‖Ak(φ)]

−
∫

x,t,t ′
W (t − t ′)φ̃(x,t)φ̃(x,t ′). (22)

We conclude that at this order only one function, Ak(φ), has a
nontrivial renormalization flow that we derive in the following.

V. UPPER CRITICAL DIMENSION AND CONTROVERSIES

Before deriving the flow equation and giving the results
using the NPRG, we discuss here the upper critical dimension
of this model, and try to clarify the misunderstanding about
the relevance of some operators. First, depending on the nature
of the noise, isotropic or static, the model has different upper
critical dimensions. This upper critical dimension is d stat

c = 4
in the case of a static noise, and d iso

c = 2 in the case of an
isotropic noise, as already stated in [27].

The computation of the upper critical dimension is made
very simple once the model has been cast into its simplest form
(22) using symmetry considerations. From this equation, we
find that the engineering dimension of the field φ (expressed
in momentum scale) is

[φ] = 2(d − 2κ)

3
, (23)

where κ = 1 for an isotropic noise and κ = 2 for a static
noise. Therefore, a coupling constant in front of a φi term is
irrelevant for d > dc = 2κ , which indeed yields the previous
upper critical dimensions.

However, the important and surprising feature of this model
is that, exactly at the upper critical dimension d = d stat

c or
d = d iso

c , the dimension of the field φ vanishes, meaning
that all terms

∫
x φ̃ ∂2

‖φn coming from the expansion of the
function Ak(φ) in Eq. (22) are equally relevant, as pointed
out in [29,51] in the isotropic case. It therefore invalidates
the whole approach of [27,28] since infinitely many coupling
constants were discarded. We indeed show in the following
that truncating the function Ak greatly modifies the physics
and the computation of the critical exponent of the model.

VI. FLOW EQUATION

We now compute the flow of the function Ak(φ), which we
define as

Ak(φ) = 1

�

(
∂p2

‖ FT

(
δ�k

δφ̃(z)

)
( p)

)∣∣∣∣
φ(x,t)=φ, p=0

, (24)

where � is the volume of the system and FT(f )(q) refers to
the Fourier transform of the function f (x) with the convention
(14). Notice that one has to evaluate it at constant field after
having performed the momentum derivation. This is unusual
in the NPRG context, and we therefore give slightly more
details of the derivation of the flow in Appendix A. In order
to find a fixed point of the RG flow, one has to write the flow
equation in terms of dimensionless variables. We define them
in the following way:

x̂⊥ = k x⊥, (25a)

t̂ = k2 t, (25b)

Â(φ̂) = Ā−1
k Ak(φ), (25c)

x̂‖ = k1+(d−2κ)/3Ā
−2/3
k x‖, (25d)

φ̂ = k(4κ−2d)/3Ā
1/3
k φ, (25e)

ˆ̃φ = k2(κ−d)/3Ā
1/3
k φ̃, (25f)

where we define the running coefficient Āk such that Â′(φ̂ =
0) ≡ 1 where the prime means derivation with respect to φ.
In the critical regime, this running coefficient is expected to
behave as a power law Āk ∼ k−η∗

A , and we therefore define a
running exponent ηA(k) = −k∂k ln Āk such that ηA(k = 0) ≡
η∗

A. The roughness exponent α and the anisotropy exponent
ζ correspond respectively to the anomalous dimension of the
field φ and to the anomalous dimension of the longitudinal
direction x‖. They can thus be expressed in terms of the fixed
point value of η∗

A as

α ≡ (4κ − 2d − η∗
A)/3, (26)

ζ ≡ 1 + (d + 2η∗
A − 2κ)/3. (27)

The flow of the function Â(φ̂) can be split into two parts:

k∂kÂ(φ̂) = k∂kÂ(φ̂)|dim + k∂kÂ(φ̂)|dyn, (28)
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where the dimensional part of the flow k∂kÂ(φ̂)|dim di-
rectly follows from the previous definitions (25) and
reads

k∂kÂ(φ̂)|dim = ηAÂ(φ̂) + 2d + ηA − 4κ

3
φ̂Â′(φ̂), (29)

while the dynamical part of the flow is derived in Appendix A
and reads

k∂kÂ(φ̂)|dyn = (3κ − 2)Kd

2

×
∫ ∞

y=0

∫ π

θ=0

yd/2−κ sin(θ )d−2r ′(y)Â′′(φ̂)

(r(y)+sin2 θ+Â′(φ̂) cos2 θ )1+κ
,

(30)

where Kd = (2d−1πd/2�(d/2))−1 = Sd−1/(2π )d with Sd the
surface of the d-dimensional unit hypersphere. Moreover,
the definition of the running anomalous dimension ηA(k)
provides us with the additional equation k∂kÂ

′(0) = 0, which
yields

ηA = κ − d/2 − 3(3κ − 2)Kd

8Â′(0)

×
∫ ∞

y=0

∫ π

θ=0

yd/2−κ sin(θ )d−2r ′(y)Â′′′(0)

(r(y) + sin2 θ + Â′(0) cos2 θ )1+κ
. (31)

Notice that in Eqs. (28) and (31) the dimension d, as well as
the nature of the noise κ are real parameters that can be chosen
at will. Starting from the flow equations (28) to (31), one
can easily retrieve the one-loop perturbative results obtained
in [29], and the truncated results of [27,28]; this is explained
in Appendix B.

Notice that in the case of static noise, in d = 2 and with the
� regulator (13), the flow equation (28) can be rewritten in a
much simpler form:

k∂kÂ = ηAÂ + ηA − 4

3
φ̂Â′ − (1 + 3Â′)Â′′

4(Â′)3/2
, (32)

where we have omitted the argument of Â and its k dependence
for convenience.

VII. LINE OF FIXED POINTS

We now study the properties of the flow equation (28).
Notice that at the fixed point [namely when Â(φ̂) = Â∗(φ̂)
such that k∂kÂ

∗(φ̂) = 0], the flow equation provides us with
an iterative scheme for computing the derivatives Â∗(j )(0) ≡
aj for all j . Indeed, at the fixed point and evaluated
at φ̂ = 0, the derivatives of Eq. (28) can be rewritten
as

f3(η∗
A,a3) = 0, (33a)

f5(η∗
A,a3,a5) = 0, (33b)

f7(η∗
A,a3,a5,a7) = 0, (33c)

...

where the fi are linear functions of their last argument.
For instance, for the static noise in d = 2 and with the

� regulator (13), the previous equations yield

a3 = 4

3
(η∗

A − 1), (34a)

a5 = 4

3
(η∗

A − 1)(5η∗
A − 7), (34b)

...

Therefore, provided that the Taylor expansion of Â∗(φ̂) around
φ̂ = 0 can be analytically continued on the whole real axis
then a line of fixed points parametrized by the values of η∗

A

exists, as claimed in [29]. On the other hand, notice that a
truncation of Â at any finite order will not yield a line of fixed
points. For instance, writing Â = φ̂ + a3/3! φ̂3 means that the
coefficient a5 vanishes and thus yields η∗

A = 1 or η∗
A = 7/5

according to Eq. (34b). Instead of improving the accuracy
of η∗

A, increasing the rank of the truncation will rather yield
more and more (different) fixed points, with some stable and
some unstable. The correct picture is therefore only accessible
when the problem is tackled functionally, that is with the full
function Â(φ̂).

Studying numerically these fixed points as well as their
stability is nontrivial as we show in the following, but simple
physical arguments already allow us some comments: (i)
the line of fixed point is upper bounded in all dimensions
because the roughness exponent α is positive, and we therefore
deduce from Eq. (26) that η∗

A � 2(2κ − d); (ii) the anisotropy
exponent ζ characterizes the ratio between the roughness ex-
ponent in the transverse direction, α⊥ ≡ α, and the roughness
exponent in the parallel direction α‖ [27,28]. In our anisotropic
model, we expect this ratio to be larger than 1, i.e., ζ � 1,
which translates for η∗

A as [using Eq. (27)] η∗
A � (2κ − d)/2.

The first inequality is directly encoded in the flow equation
since there exists no scaling solution [of the form Â∗(φ̂) ∼ φ̂γ

at large field] of the fixed point equation (28) when η∗
A is such

that α < 0. The second inequality also has a signature in the
flow equation, more precisely on the scaling form of the fixed
point function Â∗(φ̂): indeed, studying Eq. (28) at large field,
one finds that the fixed point function should scale as

Â∗(φ̂) ∼
φ̂→∞

φ̂ γ with γ = 3η∗
A

4κ − 2d − η∗
A

(35)

and the inequality ζ � 1 is equivalent to saying that Â∗(φ̂) is
sublinear at large field, which is not unphysical, but simply
does not correspond to the model that we study where
we expect nonlinearity and a power-law behavior at large
field. These considerations allow us to discard the isotropic
noise (κ = 1) since, in dimension d = 2 = d iso

c (the physical
dimension of our problem), the only value of α that satisfies
both inequalities is the trivial Edwards-Wilkinson exponent
α = 0. Within this erosion model, an isotropic noise can
therefore not explain the observed landscapes roughness; see
Fig. 1.

VIII. NUMERICAL SOLUTION

We are now interested in confirming the existence of the line
of fixed points found above from a Taylor expansion around
φ̂ = 0. We now focus on the case of static noise, in d = 2 and
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η A

0

2

d

unphysical region (α < 0)

uninteresting region (ζ < 1)

(a)

η A

0

4

d
1 2

21

3 4

unphysical region (α < 0)

uninteresting region (ζ < 1)

line of fixed
points

(b)

FIG. 1. Critical exponent ηA for isotropic (a) and static (b) noises
as a function of the physical space dimension d . Recall that for
landscape erosion, the dimension of interest is d = 2. The upper
colored region is unphysical (α < 0). Its lower boundary is the
Edwards-Wilkinson fixed point with α = 0. The bottom region is the
physical yet uninteresting region for which the anisotropy exponent
ζ is lower than 1. In this region, the function behaves like Â∗

k ∼ φ̂γ

as φ̂ → ∞, with γ < 1, and the system does not display the kind
of nonlinearity we were looking for. The blank region in between is
therefore the interesting region for our model; it ends up in a single
point at the upper critical dimension, d iso

c = 2 (a), or d stat
c = 4 (b). In

the case of the anisotropic noise (b), we see that there is an interval
of fixed points (red line) in d = 2.

with the � regulator (13), although the method we present
remains true for a different noise, dimension or regulator. The
flow equation in this case is given by Eq. (32).

We thus solve numerically the fixed point equation:
k∂kÂ

∗(φ̂) = 0 together with the two boundary conditions
Â∗(0) = 0 coming from the fact that A(φ) is odd and Â∗′(0) =
1 which defines ηA(k). The numerical integration is performed
on a finite grid φ̂ ∈ [0,φ̂max]. The derivatives of Â∗ are then
computed on this grid using the usual “five-point stencil”
method. At the leftmost part of the grid (φ̂ = 0), we use the
fact that Â∗(−φ̂) = −Â∗(φ̂). On the rightmost part of the grid,
we do not impose any boundary condition and the derivatives
are computed using only points inside the grid. This simple
scheme confirms the existence of a line of fixed points: for any
given η∗

A (such that α � 0) we find a fixed point function Â∗

solution of Eq. (32). The precision of each of these solutions
is refined when the size of the box φ̂max or the number of
discretization points is increased. In particular, the scaling at
large field, Eq. (35), is very well reproduced (at least when
φ̂max is large enough) which confirms the global existence of
the fixed points. Notice that an exact solution of the fixed
point equation (32) for η∗

A = 0 is available (see Appendix C)
which allows for a check of our numerical solution in this
particular case.

The stability of these fixed points is a subtler issue. Usually,
the stability analysis is simply performed by linearizing
the flow around the fixed point, that is, by computing the
(discretized) stability matrix and evaluating its eigenvalues.
The sign of these eigenvalues then provides the stability of
each fixed point. An alternative path consists in perturbing
the fixed point solution: Â(φ̂) = Â∗(φ̂) + ε eλsg(φ̂) [where
s = log(k/	) is the RG time] and then solving the differential
equation for g while using a shooting method to find the
eigenvalues λ [52–54]. In this model, however, none of
these methods yield reliable results since we do not observe
the convergence of the eigenvalues when the size of the box
or the number of discretization points is increased.

To tackle this issue, we perform a numerical integration
of the flow equation (32) starting with different initial
conditions Âinit. We use a Runge-Kutta scheme and the same
discretization for the field φ̂ as explained above for the fixed
point equation. For various initial conditions, we observe that
ηA(s) reaches a first plateau [see Fig. 2(a)] which is left after
a finite RG time. The flows then reach a second plateau where
they stay forever. Whereas the position of the first plateaus
depends on the initial condition, the second plateau is the
same for all initial conditions; this seems to indicate the
existence of a unique fully attractive fixed point, for which
η∗

A � 2.29, whereas all the other fixed points are unstable.
However, increasing the size of the box φ̂max increases the
length of the first plateaus [see Fig. 2(a)] and it seems that,
except for numerical stability issues, we could virtually extend
these plateaus for an arbitrary long RG time by increasing
φ̂max. We notice that all the plateau functions Âplateau(φ̂) match
with the fixed point solutions found by integrating Eq. (32)
directly at the fixed point and for ηA = η

plateau
A ; see Fig. 3. This

indicates that the first plateaus correspond to fixed points that
are (numerically) unstable.

To cure the sensitive dependence of the numerical flow on
the box size φ̂max, we proceed to a compactification of the field
φ̂ and define y = φ̂2/(m + φ̂2), with m a free parameter. The
whole interval φ̂ ∈ [0,∞[ is mapped onto y ∈ [0,1[ that can
be discretized. We also compactify the function Â and obtain
a new function D(y) which remains finite when y ∈ [0,1[.
In this compactified version, the flow of D provides us with a
boundary condition at the rightmost side of the new box, y = 1.
The numerical integration of this compactified version reveals
that each initial condition converges towards a different fixed
point, that is, to a single plateau (reminiscent of the plateaus
1 and 1′ [see Fig. 2(a)] in the noncompactified version),
different for each initial condition. This qualitative feature
is not modified when the number of discretization points is
increased and m is varied and therefore highlights the fact that
the previous stable fixed point, reached at large RG time and
observed in Fig. 2(a) on the plateau 2, is a numerical artifact.
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(a)

(b)

FIG. 2. RG flows [s = log(k/	) is the RG time] of the exponent
ηA for two different initial conditions, obtained by integrating
numerically the flow equation (32). (a) Dotted lines a and b: initial
condition with a large field behavior Âinit(φ̂) ∼ φ̂8 for which we
expect from Eq. (35) an exponent η∗

A � 2.91 which is indeed what is
observed on the plateau 1. Solid lines a′ and b′: same as above with
Âinit(φ̂) ∼ φ̂3.5 and η∗

A � 2.15 which is observed on the plateau 1′.
At large s, both flows end on the plateau 2. The curves b and b′ are
obtained by increasing the size of the box φ̂max, which increases the
length of the plateaus 1 and 1′. (b) Same initial conditions as for (a),
but with improved computation of the derivatives of Â around φ̂max

(see main text). With this method, the first plateaus 1 and 1′ are never
left showing that the crossover to plateau 2 is a numerical artifact.

However, the quantitative picture, that is, the precise positions
of the plateaus, is modified when the number of discretization
points is increased. We have not been able to obtain fully
converged results by increasing the number of points in the
grid which indicates that the behavior of D in the vicinity of
y � 1 is not well captured by our numerical scheme in the
compactified version.

The final remedy to these numerical hurdles is the follow-
ing: going back to the noncompact formulation in terms of φ̂

and Â, we modify the way the derivatives of Â are computed
around φ̂max. Instead of using the “five-point stencil” method,
we now fit the large-field region by a function b φ̂γ [where γ is
given by Eq. (35)], and compute the derivatives at the boundary
using this fitting function. This fit prevents the numerical drift
that eventually leads the flow to leave the plateaus 1 or 1′, and

FIG. 3. Solid line: fixed point solution Â∗(φ̂) of Eq. (28) for ηA =
η

plateau
A � 2.91. Dashed line: asymptotic behavior in φ̂ 3ηA/(4−ηA) with

ηA = η
plateau
A . Dots: plateau solution Âplateau(φ̂) for φ̂max = 80 (blue),

200 (yellow), and 400 (red) taken from the numerical solution of
Eq. (28) at RG time s = −5. The plateau solution converges towards
the true fixed point solution as φ̂max is increased.

confirms that the fixed point η∗
A � 2.29 is only a numerical

artifact; see Fig. 2(b).
From this numerical study, we conclude that the whole

interval of fixed points with α ∈ [0,1[ is stable, and the
convergence to one of these fixed points is determined by the
large-field behavior of the initial condition. The importance of
the initial condition due to the existence of this line of fixed
points signals the breakdown of universality for this model,
although a nontrivial anisotropy exponent α �= 0 is preserved.

IX. CONCLUSION

To summarize, in all dimensions d there exists a half-line of
stable fixed points which correspond to a positive roughness
exponent α. In d = 2 in particular, if one aims to study the
effects of anisotropy, then only the fixed points for which ζ � 1
should be considered, which means that the line of fixed points
shrinks to an interval in the case of the static noise (κ = 2),
or to a single (trivial) fixed point α = 0 for the isotropic noise
(κ = 1).

In the light of the results on this anisotropic model, it
appears that the discussion about the origin of the scaling in
erosional landscapes is not completely closed. However, some
new elements are now available: anisotropy is indeed a relevant
feature in this context, and should not be overlooked when
modelizing erosion at short length scale. The nature of the
noise is also a main characteristic and drastically modifies the
scaling behavior of the model, since it changes its universality
class. As a remark, notice that within the NPRG formalism, the
noise term could be studied for noninteger values of κ between
1 and 2, therefore giving rise to a smaller range of accessible
α. The status of a noninteger value of κ is not mathematically
clear, but one can see it as an interpolation between the two
meaningful values κ = 1 (isotropic noise) and κ = 2 (static
noise).

Moreover, we believe that our results can give some insights
for the great dispersion of the values of the roughness exponent
α when looking at different field measurements: if this model
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is valid (or at least the fact that an interval of fixed points
may be generic in more realistic erosion models), then the
dispersion of the roughness exponent is a signature of this line
of fixed points, each of them corresponding to a different value
of the exponent due to the difference in the initial conditions,
that is differences in the geological context in the case of real
landscapes. Let us also emphasize the surprising yet interesting
fact that even though this anisotropic model is rather simple
(there is only one renormalized function), it yields a very
nontrivial RG physics, functional in essence and displaying a
line of fixed points.

Finally, although this work was focused on the erosion of
landscapes and on the topography itself, continuum models
have also been devised and applied to river landscapes
[55,56]. Numerical studies stemming from these models
have been carried out but they still lack a theoretical
study. We believe that our framework could be applied
successfully to these models, and will be subject to further
work.
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APPENDIX A: DERIVATION OF THE FLOW EQUATIONS

In this Appendix we derive the flow of the nonlinear
function Ak(φ), defined in Eq. (24). Having in mind this
definition, we use the Wetterich equation (16) to deduce the
following equality:

∂kFT

(
δ�k

δφ̃(z)

)
( p) = − 1

2
Tr

∫
k1,q1,q2

∂kRk(k1)

· Gk(−k1, − q1; φ) · �
(3)
k,ψ̃

(q1,q2, p)

· Gk(−q2,k1; φ), (A1)

where
∫

q ≡ 1/(2π )d+1
∫
q,ω

dd−1q⊥ dq‖ dω and �
(3)
k,ψ̃

≡
δ�

(2)
k /δψ̃ reads

�
(3)
k,ψ̃

(q1,q2, p) =
(

p2
‖ TF(A′′

k (φ))(q1 + q2 + p) 0

0 0

)
.

(A2)

Notice that we keep the same name for a function and
its Fourier transform, such that a function f (q) has to be
understood as the Fourier transform of f (x), and we recall the
convention: f (q) = ∫

x f (x)e−i(qx−ωt).
In order to get the flow of Ak , one now has to take the

derivative of the previous expression with respect to p2
‖ ,

and then to evaluate it at p = 0 and uniform field φ. Since
�

(3)
k (q1,q2, p) ∝ p2

‖ , the whole expression is proportional to
p2

‖ and the only nonvanishing term after the derivation and
the evaluation at zero external momentum ( p = 0) is the one
obtained when deriving �

(3)
k (q1,q2, p) with respect to p2

‖ , and

evaluating every other Fourier transform at p = 0. This means
that one can already perform the evaluation at constant field,
which simplifies drastically the computation. One therefore
gets

∂kAk = − 1

2
Tr

∫
q1

∂kRk(q1)

· Gk(−q1; φ) ·
(

A′′
k (φ) 0

0 0

)
· Gk(q1,φ), (A3)

where the full propagator Gk is now evaluated at uniform field
and reads

Gk(q; φ) =
( 2W (ω)

P (q2,ω)P (q2,−ω)
1

P (q2,−ω)
1

P (q2,ω) 0

)
, (A4)

with P (q2,ω) = Rk(q2
‖ ,q

2
⊥) + q2

⊥ + q2
‖A

′
k(φ) + iω, and

W (ω) = 1 for an isotropic noise, and W (ω) = δ(ω) for a static
noise. After performing the matrix product and the trace, the
integration over the frequencies is straightforward and yields
for the flow of Ak

∂kAk =− (3κ − 2)Kd

2

×
∫ ∞

|q⊥|=0

∫ ∞

q‖=−∞

∂kRk(q2
‖ ,|q⊥|2)|q⊥|d−2A′′

k (φ)

(Rk(q2
‖ ,|q⊥|2)+|q⊥|2+q2

‖A
′
k(φ))1+κ

,

(A5)

where κ = 1 for an isotropic noise, and κ = 2 for a static
noise, and where Kd = (2d−1πd/2�(d/2))−1 = Sd−1/(2π )d

with Sd the surface of the d-dimensional unit hypersphere.
Notice that we have used the rotational invariance in the
transverse direction to rewrite the integral over q⊥ as an
integral over its norm. Finally, one performs the change
of variable q‖ = √

y cos(θ ) and q⊥ = √
y sin(θ ) with y ∈

[0,∞[ and θ ∈ [0,π ]. If we furthermore chose the regu-
lator Rk to be a function of y = q2

⊥ + q2
‖ only, we can

write

Rk(q2
‖ ,|q⊥|2) = yk2r(y), (A6)

with r(y) the usual momentum regulator, for example an
exponential regulator:

r(y) = a

ey − 1
, (A7)

where a is a free parameter. Finally, using the dimensionless
variables as defined in Eq. (25), the particular form of regulator
(A6), and Eq. (A5), one finally gets the dynamical part of the
flow, Eq. (30).

APPENDIX B: RETRIEVING THE ONE-LOOP
PERTURBATIVE RESULTS

To retrieve the perturbative results from [27,28], and from
[29], we first evaluate the previous equations at the upper
critical dimension dc, which depends on the noise type: d stat

c =
4 for a static noise and d iso

c = 2 for an isotropic noise. We
define accordingly ε = dc − d.
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1. Pastor-Satorras and Rothman’s results

The equations derived in [27] are retrieved by performing
a lowest-order expansion of the function Â(φ̂):

Â(φ̂) = φ̂ + â3

3!
φ̂3, (B1)

where â1 ≡ 1 by definition of the anomalous dimension
ηA. Then, taking derivatives of the flow equation (28), and
evaluating them at φ̂ = 0, one finds

ηA = ε

2
+ 3πKd

8
â3, (B2)

k∂kâ3 = −εâ3 + 3πKd

2
â2

3 . (B3)

Notice that at first order in the ε expansion, the integrals of
the dynamical part of the flow can be computed analytically
at d = d stat

c or d = d iso
c . Moreover, at the first order in the

ε expansion, one notices that the flow equations do not
depend on the precise shape of the regulator r(y). Finally,
the definition of the term in front of the cubic term in Â, â3,
differs from that of [27] and the relation between the two is
â3 = 2λ. Their dimensionless parameter λ̄ is also proportional
to ours and we have the following relation between the
two: â3 = 2(2π )d−1/Sd−1λ̄, where Sd is the surface area of
a d-dimensional unit sphere. Up to these notations, and up
to a factor −1 which comes from the fact their equations
are derived for the real-space variable l, whereas ours are
derived for the momentum k, Eq. (B3) is indeed equivalent
to their Eq. (6) in [27]. We also agree with their results for
the roughness (and anisotropy) exponent, and the stable fixed
point of Eqs. (B2) and (B3) indeed yields:

α ≡ (4κ − 2d − η∗
A)/3 = 5

12
ε. (B4)

We still emphasize that this result is not correct, even for
ε → 0, because the expansion (B1) discards an infinity of
equally relevant coupling constants and is thus not valid.

2. Antonov and Kakin’s results

Following [29], we set κ = 1 (isotropic noise), dc = d iso
c =

2, and we expand the function Â(φ̂) as

Â(φ̂) = φ̂ +
∞∑
i=2

âi

i!
φ̂i . (B5)

Notice that Â is not an odd function of φ̂. Again, taking
derivatives of the flow equation (28), and evaluating them
at φ̂ = 0, we are able to retrieve the equations derived in
[29], except that we do not agree on their integration over the
momenta. Indeed, in [29], the integration over the momenta∫

dk seems to be performed as if k was isotropic, yielding a
factor Sd , whereas we argued it should be a factor Sd−1. A
factor π coming from the integration over the angle θ is also
missing. Up to this difference and notational discrepancies,
our flow equations are in a one to one agreement with the
β functions of [51] (those of the first article [29] involved a
misprint in the β2 function).

Notice also that contrary to what is stated in [29], tak-
ing âi = 0 for all i �= 3 makes the RG equations of [29]
boil down to those of [27,28] (up to the factor coming
from the momentum integration discussed in the previous
paragraph).

APPENDIX C: EXACT SOLUTION OF THE FIXED POINT
EQUATION FOR η∗

A = 0

In the special case of η∗
A = 0 (which is not interesting for the

physics since it means ζ = 1/3 < 1), the fixed point solution
of the flow equation (32) can be solved exactly. Indeed, one
can show that Â′(φ̂) is a solution of the simple differential
equation:

4(2φ̂2 + 5)2(Â′)3 − (9Â′ + 1)2 = 0, (C1)

which can be solved exactly in terms of an integral over an
algebraic integrand. In this special case, we therefore have
a proof that a well-defined function exists on the whole real
axis.

Moreover, this function is in fact also a solution of a linear
ordinary differential equation of order 4, on which the study of
the singularities can be performed. The main singularity lies at
φ̂2 = −5/2 and not on the real axis. Thus, at least in this case,
the series expansion around φ̂ = 0 of the fixed point solution
coincides with the fixed point solution, although it has a finite
radius of convergence, R = √

5/2.
Although it is difficult to extrapolate this result

to the physically interesting values of η∗
A, we have

nonetheless checked that our numerical integration of
the fixed point equation for η∗

A = 0 matches this exact
result.
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