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Abstract

Using concepts from integral geometry, we propose a definition for a local coarse-
grained curvature tensor that is well-defined on polygonal surfaces. This coarse-grained
curvature tensor shows fast convergence to the curvature tensor of smooth surfaces, cap-
turing with accuracy not only the principal curvatures but also the principal directions
of curvature. Thanks to the additivity of the integrated curvature tensor, coarse-graining
procedures can be implemented to compute it over arbitrary patches of polygons. When
computed for a closed surface, the integrated curvature tensor is identical to a rank-2
Minkowski tensor. We also provide an algorithm to extend an existing C++ package, that
can be used to compute efficiently local curvature tensors on triangulated surfaces.
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1 Introduction

In the last decades, biophysics and soft matter physics have provided many examples where
the geometry of the system plays a major role to understand the structural and mechanical
properties of materials such as colloids, liquid crystals, membranes, cells and tissues [1–6]. In
the case of a fluid membrane for instance, the local mean and Gaussian curvatures of the sur-
face are crucial ingredients of its energy functional [1,7]. The description of membranes that
exhibit a polar (or nematic) order requires not only the knowledge of the principal curvatures,
but that of the full local curvature tensor, as couplings between the polar order parameter and
the curvature tensor are allowed by symmetry [8,9]. Moreover, active membranes such as the
cell cortex or cell monolayers can exert active tensions and active moments which generically
couple to the local curvature tensor [10]. Such couplings can for instance be a consequence
of a preferential alignment of filaments of the cytoskeleton along the axis of largest curvature.
At the macroscopic level, such systems can be described using tools from (nonequilibrium)
statistical mechanics [10] and from differential geometry [11], and the existence of a smooth
manifold and a well-defined curvature tensor is assumed. It is therefore crucial to understand
how the macroscopic continuum description in terms of local metric and local curvature ten-
sors can be obtained from the coarse-graining of discrete objects such as molecules, colloids
or cells.

Surfaces represented by discrete triangles or polygons are ubiquitous as they arise from
the discretization of a smooth surface for numerical purposes, or from experimental data on
real geometries. Defining curvature measures on such polygonal or triangulated surfaces is a
long-standing problem which has been addressed extensively in mathematics [12–14]. Despite
these important contributions, that we discuss more below, a robust and practical definition
of a local curvature tensor that converges to the continuum curvature tensor in the limit of
infinitesimal triangulation remains however elusive for such surfaces. Several methods have
been proposed to compute curvature tensors from triangulated surfaces. Some of them rely
on a local fit of the smooth surface to the triangulated manifold [15, 16]. The resulting cur-
vature tensor depends on the method used and such approaches are unsatisfactory in cases
where the surface is intrinsically made of triangles or polygons, as cellular tissues or foams,
for instance. Other methods are directly built on the triangulated surface, but their definitions
rely on arbitrary choices, leading to a proliferation of algorithms [17–20].

The development of integral geometry [12–14] has however provided physicists with new
tools to quantify shapes and curvature of surfaces, for instance by using Minkowski function-
als [21, 22]. Minkowski functionals are defined locally on open or closed surfaces and can
take scalar or tensorial values [12–14]. They possess several properties that make them es-
pecially appealing: they are additive, continuous, motion covariant (invariant for the scalars)
and span the space of scalar and tensor-valued valuations on convex shapes [23–27]. The last
property implies in particular that any extensive and motion invariant scalar functional can be
written as a linear combination of the Minkowski scalars [21]. For a closed body embedded
in a three-dimensional space, there are only d + 1 = 4 Minkowski scalars: the volume of this
body, its surface area, its integrated mean curvature and its integrated Gaussian curvature (or
Euler characteristic). Minkowski tensors are a generalization of the Minkowski scalars to ten-
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sorial quantities [22, 28] and share their appealing properties. For the reasons stated above,
the Minkowski scalars have proven extremely robust to evaluate the local curvature of sur-
faces [29,30], while the rank-2 Minkowski tensors have been used to analyze anisotropy in a
wide range of phenomena ranging from the shape of neuronal cells in the brain [31] to the
shape of galaxies in the universe [32]. Their robustness also permits to use them on cellular
and discretized structures, and a coarse-grained evaluation of Minkowski tensors can even
be obtained for pixelated images and polygonal surfaces defined on grids [22]. Higher-rank
Minkowski tensors have also been used recently for shape reconstruction [33,34], relying on
the fact that a polytope in dimension d with m facets is uniquely determined by its surface
tensors up to rank m−d+2 [34]. Finally, we note that curvature-weighted tensorial measures
have also been used with success in density functional theories for fluids made of arbitrarily-
shaped convex hard particles [35,36].

In this paper, inspired by these concepts from integral geometry, we provide a definition
for a local integrated curvature tensor. This integrated curvature tensor is defined as the sum
of two local Minkowski tensors. It is well-defined on polygonal surfaces and it is additive
in the sense of Minkowski functionals. Because of this property, we can use this tensor to
define a coarse-grained curvature tensor. We show that this coarse-grained curvature tensor
on arbitrary triangulated surfaces displays robust convergence to the curvature tensor of the
corresponding smooth surface.

The paper is organized as follows. We first define an integrated curvature tensor for a
smooth surface. Using a parallel body construction, we then translate this definition to a
triangulated surface, and discuss the properties of this triangle-based curvature tensor. In
Sec. 3, we discuss the convergence properties of this definition on a set of simple smooth
surfaces. We then present an algorithm to compute this curvature tensor on any triangulated
surface by extending the algorithm of Ref. [22]. We illustrate this procedure on a few surfaces
and compute principal curvatures and directions of principal curvature of the coarse-grained
curvature tensor for these surfaces.

2 Integrated curvature tensor

2.1 Differential geometry of curved surfaces

We first consider the case of a smooth surface that can be described using differential geometry.
Let S be a two-dimensional surface parameterized by two coordinates and let x(s1, s2) ∈ S be
a point on this surface. At each point on the surface we associate a local basis composed of
two tangent vectors e1 and e2, and a normal vector n, defined as:

e1 =
∂ x
∂ s1

, e2 =
∂ x
∂ s2

, n=
e1 × e2

|e1 × e2|
, (1)

see Fig. 1 for illustration. The vectors ei form the covariant base of the tangent space. We fur-
thermore define the contravariant base e j as ei · e j = δ j

i , where · denotes the scalar product,

indices run from 1 to 2, and δ j
i is the Kronecker symbol. We also define the local metric tensor

with components gi j = ei ·e j in the local basis ei . Indices can be raised or lowered by contrac-
tion with the metric tensor: ai = g i ja j where a summation over repeated indices is implied
here and in the following. We denote by d` a line element on the surface with d`2 = gi jdsids j ,
and dA=pgds1ds2 the components of an area element, where g = det gi j is the determinant
of the metric tensor. We finally define the local curvature tensor with components ci j given by:

ci j = −(∂i∂ jx) · n , (2)
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(a) (b)

Figure 1: Notation used for a smooth surface (a) and a triangulated surface (b). For
the triangulated surface, the normal vector n is defined everywhere on the surface
(including on the sharp edges between triangles) using a parallel body construction
(see text).

where ∂i = ∂ /∂ si . The coordinate-independent form c of the curvature tensor is written as:

c = ci je
i � e j , (3)

where a� b ≡ (a⊗ b+ b⊗ a)/2 is the symmetric tensor product. The curvature tensor de-
scribes changes in the local basis when moving on the surface as described by the Gauss–
Weingarten equations [11]:

∇ jn= ci je
i , (4a)

∇ jei = −ci jn , (4b)

where ∇ j denotes the covariant derivative [10,11].

2.2 The integrated curvature tensor

Equation (3) is well-defined for smooth surfaces but difficult to define for surfaces built from
discrete components such as particles, molecules, polygons or triangles. We therefore define
a coarse-grained curvature measure defined by integrating the curvature tensor over a finite
surface patch P . This leads to the definition of the integrated curvature tensor M:

M =

∫

P
dAc =

∫

P
dAci je

i � e j . (5)

Using the Gauss–Weingarten equation (4a), the integrand of Eq. (5) can be rewritten as

ci je
i � e j =∇ jn� e j =∇ j(n� e j)− n�∇ je

j

=∇ j(n� e j) + c i
i n� n ,

where the second line has been obtained using Eq. (4b). Then, using the divergence theorem
on a curved surface [10,37], the integrated curvature tensor is rewritten as a sum of a boundary
contribution and a surface term:

M =

∫

P
dAc i

i n� n+

∮

C
d`νie

i � n . (6)
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(a) (b)

Figure 2: Definition and notation used for a triangulated surface and its parallel body,
following Ref. [22]. (a) Definition of the edges using a doubly connected edge list
data structure. Each edge e is oriented and uniquely assigned to a triangle T , and has
a counter-oriented edge e′ assigned to the adjacent triangle T ′. An oriented edge is
also unambiguously assigned to the previous edge eprevious and to the next edge enext.
(b) Cross-sectional view along the oriented edge e. The parallel surface of width ε
regularizes the triangulated surface and allows the computation of integrated surface
quantities. See main text for the definitions of the quantities.

Here, C denotes a contour enclosing the surface patch P , and ν= νie
i is a unit vector, tangent

to P , outward-pointing and normal to the contour C (see Fig. 1).
The definition (6) of the integrated curvature tensor has the form of a sum of two Minkowski

tensors. The surface term (first term in Eq. (6)) is proportional to the local three-dimensional
Minkowski tensor W 0,2

2 [22]. The boundary term (second term in Eq. (6)), is formally a non-
Euclidean two-dimensional Minkowski tensor embedded in three-dimensional space. The rep-
resentation of the integrated curvature tensor given in Eq. (6) reduces for a closed surface S
to a single rank-2 Minkowski tensor W 0,2

2 = (1/6)
∮

S dAc i
i n� n [22], since the contour term

vanishes in this case. Importantly, both terms in Eq. (6) are additive and well-defined for a
triangulated surface, as we see in the next section.

Furthermore, the integrated mean curvature M over the patch P can be directly obtained
by taking the trace of the integrated curvature tensor defined by Eq. (6):

M =
1
2

∫

P
dAc i

i =
1
2

Tr M , (7)

since Tr
�

ei � n
�

= 0 and Tr (n� n) = 1.
Finally, the integrated curvature tensor can be normalized by the area A=

∫

P dA of patch
P to obtain the coarse-grained curvature tensor C :

C = M/A , (8)

which will be crucial to define a local curvature tensor on polygonal surfaces.

2.3 Integrated curvature tensor on triangulated surfaces

In the following, we consider triangulated surfaces for simplicity. Note that our formalism
can be applied to any polygonal surface. The parallel body construction of a triangulated
surface, that we describe below, will allow us to define the integrated curvature tensor of
surface patches represented by planar triangles and even for a single triangle by using Eq. (6).
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For this purpose, we first define some notation following Ref. [22]. On the triangulated surface,
each edge e is oriented and uniquely assigned to a triangle T , and has a counter-oriented edge
e′ assigned to the adjacent triangle T ′ (see Fig. 2). An oriented edge is also unambiguously
assigned to the previous edge eprevious and the next edge enext. This description corresponds
to a doubly connected edge list data structure. The normal vector on a triangle T is defined
as nT = (eprevious × e)/|eprevious × e|.

The normal vectors nT and nT ′ of triangles T and T ′ span the angle αe ∈ (−π,π] at their
common edge e. Along each edge e, we define the normalized edge vector ê, the mean normal
vector n̈e and its normal ṅe, such that

ê=
e
|e|

, n̈e =
nT + nT ′

|nT + nT ′ |
, ṅe = ê× n̈e (9)

form an orthonormal local basis.
By inflating the triangulated surface by an infinitesimal width ε, we construct a parallel

smooth surface that regularizes the sharp edges between triangles by portions of cylinders and
portions of spheres which allow the computation of integrated surface quantities (see Fig. 2).
We first focus on the computation of the integrated curvature tensor of a single triangle, as
the integrated curvature of a patch of triangles is obtained by summing the contribution of
individual triangles (see below). The integrated curvature tensor of a single triangle is defined
by computing Eq. (6) over the triangle and over the portions of the infinitesimal cylinders that
connect it to its neighbors and then by taking the limit ε→ 0. The area contribution appearing
in Eq. (6) for a single triangle reads:

∫

P
dAn� nc i

i = lim
ε→0

∑

e∈T

∫ |e|

0

d`

∫ αe(ae−1/2)

−αe/2

εdθn� n
1
ε

, (10)

where the sum runs over the edges of triangle T and where n is the normal vector along the
portion of cylinder and is parameterized by the angle θ such that n= cosθ n̈e + sinθ ṅe (see
App. A and Fig. 8 for details). Note that we integrate over a weighted portion of the cylin-
der and have therefore introduced the weight fraction ae, which we discuss in the following.
Similarly, the boundary contribution is given by:

∮

C
d`νie

i � n= lim
ε→0

∑

e∈T

∫ |e|

0

d`ν(θf)� n(θf) , (11)

where θf = αe(ae − 1/2) is the final angle of the portion of cylinder in the local basis defined
by Eq. (9), and ν(θf) = n(θf +π/2) = ê× n(θf) (see Fig. 8).

Evaluating and summing the contributions from Eqs. (10) and (11), we obtain the inte-
grated curvature tensor MT of a single triangle as:

MT =
1
4

∑

e∈T

|e|
�

(2aeαe + sinαe + sin(αe − 2aeαe))n̈e � n̈e

+ (2aeαe − sinαe − sin(αe − 2aeαe))ṅe � ṅe

+ 4cos(aeαe) cos(αe − aeαe)n̈e � ṅe

�

.

(12)

Note that for concave triangles patches, the sign of αe in Eq. (12) has to be changed (see
App. A.3). The weight fraction ae determines the fraction of the integrated curvature associ-
ated with bond e that is assigned to triangle T . Additivity of the integrated curvature tensor
imposes ae + a′e = 1, where a′e is the weight fraction associated to triangle T ′.
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The integrated curvature tensor has the following properties. First, the integrated cur-
vature tensor M of a patch P of triangles is directly obtained by summing their individual
contributions:

M =
∑

T∈P

MT , (13)

where the sum runs over the triangles T forming patch P. Furthermore, similarly to Eq. (7) in
the smooth case, the trace of the triangle-based integrated curvature tensor reads:

Tr MT =
∑

e∈T

|e|aeαe , (14)

and corresponds to the weighted sum of the integrated mean curvatures of each edge. Note
finally that MT = 0 if the triangle T is surrounded by co-planar triangles (see App. A.2 for
details).

2.4 Coarse-grained curvature tensor on triangulated surfaces

The integrated curvature tensor is a cumulative measure of curvature over a surface patch.
It is often convenient and useful to define coarse-grained curvature measures, for example to
define the curvature on a surface that is formed by discrete particles. Starting from individual
triangles, we define the coarse-grained curvature tensor CT of triangle T as:

CT = MT/AT , (15)

where AT is the area of triangle T . Similarly, the coarse-grained curvature tensor for a patch P
is given by Eq. (8) with M defined in Eq. (13).

If a smooth surface is represented by a triangulation, we demand that the coarse-grained
curvature tensor of a triangle converges to the curvature of the smooth surface in the limit
where triangles become infinitesimal. This requirement fixes the value of the weight ae as
follows. The coarse-grained mean curvature HT =

∑

e∈T He of triangle T combines contribu-
tions He = |e|αeae/(2AT ) from all edges. Convergence to the curvature tensor of a smooth
surface requires that the mean curvature associated with a bond is the same for both adjacent
triangles T and T ′. Thus, He = H ′e, which together with ae + a′e = 1 uniquely determines

ae =
AT

AT + AT ′
. (16)

Equation (15), together with Eqs. (12) and (16), define the coarse-grained curvature tensor,
which is the main result of the paper. This coarse-grained curvature tensor provides a robust
definition of curvature on triangulated surfaces, defined for a single triangle and its direct
neighbors. The definition (12) of the triangle-based integrated curvature tensor has several
appealing properties: (i) owing to the parallel body construction, it is well-defined for triangu-
lated surfaces, (ii) it is additive, and can therefore be used for coarse-graining using Eq. (13),
(iii) it displays robust convergence when a triangulation approximates a smooth surface, as
we show in the following section.

3 Approximation of smooth surfaces by triangulations

3.1 Convergence of the triangle-based integrated curvature tensor to a contin-
uum limit

We have shown that the coarse-grained curvature tensor can be computed for a triangulated
surface. We now show that it converges to the curvature tensor of a smooth surface in the
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(a) (b) (c)

Figure 3: Patch of triangles on a cylinder (a), on a sphere (b), and on an ellipsoid
(c). The triangle-based curvature tensor CT is computed for the central blue triangle
T , using curvature information stemming form its direct neighbors.

limit where the triangle size becomes small. To this end, we consider the curvature tensor of a
smooth cylinder, sphere and ellipsoid. For a smooth surface, the curvature tensor (3) is a 3×3
matrix of rank 2, and has three eigenvalues. We denote by λ1,2 the two principal curvatures,
and by λ3 = 0 the last eigenvalue, whose eigenvector is parallel to the surface normal. We
compare the curvature tensor of smooth surfaces with the coarse-grained curvature tensor CT
of a single triangle T surrounded by its three direct neighbors with triangle vertices located
on the surfaces (see Fig. 3). We determine the coarse-grained curvature tensor of the central
triangle using Eqs. (15) and (12) with an area-weight (16). We denote by Λ1,2 the principal
curvatures of the discrete curvature tensor that corresponds to λ1,2, and by Λ3 the eigenvalue
that converges to 0 and for which the associated eigenvector is parallel to the surface normal
as the areas of the triangles become small.

Cylinder. We first consider an equilateral triangle of edge length ` surrounded by three equi-
lateral triangles. All triangle vertices are located on the surface of a cylinder of radius R. For
the simple case where three of the triangles are coplanars (see Fig. 3a), the eigenvalues read

Λ1 =
cos−1

�

1− 3ε2

8

�

p
3Rε

+
p

2+ 3ε2

2
p

2R
,

Λ2 =
cos−1

�

1− 3ε2

8

�

p
3Rε

−
p

2+ 3ε2

2
p

2R
,

Λ3 = 0 ,

(17)

where ε = `/R. To lowest order in ε we have:

Λ1 =
1
R
+

25ε2

64R
+O

�

ε3
�

, Λ2 = −
23ε2

64R
+O

�

ε3
�

, (18)

showing a convergence as ε2 to the curvature tensor of a smooth cylinder with λ1 = 1/R and
λ2 = 0. An alternative tiling, where none of the triangles are co-planar, is provided in App. A.3.
In this case, we observe a slower convergence, linear in ε, to the same eigenvalues.

Sphere. Considering four equilateral triangles on a sphere of radius R, we obtain the eigen-
values of the discrete curvature tensor CT , see Fig. 3b. At lowest order in ε = `/R, we obtain:

Λ1 =
1
R
+

5ε2

18R
+O

�

ε3
�

, Λ2 =
1
R
+

5ε2

18R
+O

�

ε3
�

, Λ3 = −
5ε2

18R
+O

�

ε3
�

, (19)
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Figure 4: Convergence of the triangle-based curvature tensor on an ellipsoid with
major axes a = 1, b = 7, c = 3/2. (a) Polar angle dependence of the principal
curvatures of the smooth curvature tensor (solid lines) and of the discrete one (black
symbols). The triangle-based curvature tensor has been computed for ϕ = π/3 and
`/a = 10−3. (b) Convergence of the triangle-based principal curvatures Λ1,2 to the
smooth principal curvatures λ1,2 for a patch of triangles located at θ = 0, ϕ = π/3
(top) and θ = π/3, ϕ = π/3 (bottom).

showing a convergence as ε2 to the curvature tensor of a smooth sphere with λ1,2 = 1/R.

Ellipsoid. We now consider an ellipsoid defined by the equation

x = a sinθ cosϕ , y = b sinθ sinϕ , z = c cosθ . (20)

For simplicity, we generate a triangular patch on the ellipsoid by using four equilateral triangles
on the unit sphere and performing an affine transformation of the sphere by rescaling the
x , y, z coordinates by the factors a, b, c, respectively (see Fig. 3c). The curvature tensor on
the ellipsoid is a function of the polar and azimuthal angles θ and ϕ. In Fig. 4a, we show
the comparison between the principal curvatures of the discrete and of the smooth curvature
tensor on an ellipsoid with major axes a = 1, b = 7, c = 3/2. We consider a patch of triangles
with a vertex of the central triangle located at θ = 0,ϕ = π/3. In this case, the principal
curvatures converge as ε2 for small ε = `/a to the principal curvatures on the ellipsoid (see
top panel of Fig. 4b). The convergence is linear in ε at θ = π/3,ϕ = π/3 (bottom panel of
Fig. 4b). This difference in convergence can be explained by the fact that for θ = 0,ϕ = π/3
all triangles are equal in shape, while at θ = π/3,ϕ = π/3 the symmetry between triangles is
broken. Note that the third eigenvalue Λ3 converges to 0 as ε2 in both cases.

3.2 Directions of principal curvature on triangulated surfaces

The definition (15) can be used to obtain the local principal directions of the coarse-grained
curvature tensor on triangulated surfaces. For this purpose, we have extended the karambola
package designed in Ref. [22] to compute the triangle-based curvature tensor on arbitrary
surfaces. We provide the corresponding C++ code in App. B. As an illustration, we have
determined the principal curvatures and principal directions of curvature of the triangle-based
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Figure 5: Principal curvatures and principal directions of curvature of the triangle-
based curvature tensor for a Clifford torus (triangulated by 2880 triangles).

curvature tensor for three examples of closed surfaces with different topology, see Figs. 5, 6
and 7.

Figure 5 displays the principal curvatures and principal directions of curvature for a trian-
gulated Clifford torus. The Clifford torus is an axisymmetric torus with circular cross-section
and a ratio

p
2 of the radii of its two generating circles [38]. It has the important property

to minimize G =
∫

S dA(c i
i )

2 for toroidal topology. We indicate on each triangle the principal
directions of the triangle-based curvature tensors as bars with a color which indicates the mag-
nitude of the associated principal curvature. Note that one curvature is constant and positive,
while the other is positive (red) on the outer part of the torus and negative (blue) on the inner
part of the torus.

From this Clifford torus, we perform a special conformal transformation, which consists of
an inversion R′ = R/R2, followed by a translation by a vector t and a second inversion, such
that a point R is mapped to [30]:

R′ =
R/R2 − t
(R/R2 − t)2

. (21)

For t= 1.25r ex , with r the larger radius of the Clifford torus and ex a unit vector orthogonal
to the axis of symmetry of the torus, the transformation (21) applied to the Clifford torus yields
a non-axisymmetric torus with the same minimal value of G (see Fig. 6). Indicated are again
the principal curvatures and principal directions of curvature of the triangle-based curvature
tensor for each triangle.

The third example, displayed in Fig. 7, is the triangulated Lawson surface of genus 2 [30,
39]. The Lawson surface minimizes G for genus-2 surfaces. The principal curvatures and
principal directions of curvature of the triangle-based curvature tensor are plotted on each
triangle. These examples show that the coarse-grained curvature tensor, defined on a trian-
gulation, provides a good approximation for the curvature tensor of the underlying smooth
surfaces.

Conclusion

In this paper, starting from the definition of the integrated curvature tensor for a smooth sur-
face, we have used a parallel body construction to define an integrated curvature tensor for
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Figure 6: Principal curvatures and principal directions of curvature of the triangle-
based curvature tensor for a Clifford torus after a special conformal transformation
defined in Eq. (21) (triangulated by 2880 triangles).

polygonal and in particular for triangulated surfaces. Parallel body construction is often used
in the context of integral geometry, and is at the heart of the definition and evaluation of
Minkowski functionals on polygonal manifolds [12–14, 22]. Our definition of the integrated
curvature tensor involves a sum of two Minkowski tensors (see Eq. (6)). The first tensor is the
surface contribution that is weighted by the mean curvature of the surface patch on which it is
evaluated and is commonly used as a local curvature measure on its own. The second tensor is
a boundary contribution defined on the contour of the patch, and thus corresponds to a two-
dimensional Minkowski tensor embedded in three dimensional space. Such an embedding
of a Minkowski tensor to a higher dimensional space appears naturally in our formalism and
provides an extension of Minkowski tensors to non-Euclidean geometries. Adding the surface
and the boundary contributions together provides the information to construct a local curva-
ture tensor. Our approach illustrates the importance of the boundary contribution to obtain
a robust convergence of the coarse-grained curvature tensor to that of smooth surfaces. We
note that to define the integrated curvature tensor, it is not necessary to specify the value of
the weight factor ae. However, to define a coarse-grained curvature tensor, the weight factor
takes a unique value given by Eq. (16).

Importantly, our approach provides a definition of curvature on non-smooth surfaces. This
is relevant to build the continuum limit of the statistical physics of curved manifolds starting
from structures made of particles or molecules. For example, in a fluid membrane molecu-
lar positions define triangular meshes from which the coarse-grained curvature tensor intro-
duced here can be computed. Therefore, the differential geometry of a smooth surface can
emerge from a structure composed of discrete objects in a continuum limit. The existence
of such an explicit coarse-graining procedure is essential to make sense and to provide ex-
plicit computational tools for theories where couplings between the curvature tensor and an
additional order parameter are allowed by symmetry. This is the case for instance for equilib-
rium fluid membranes that possess a nematic order parameter that can couple to the surface
geometry [9, 40–42]. It is also true for nonequilibrium systems evolving on a curved mani-
fold, where active couplings between a polar or nematic order parameter and the curvature
tensor are generically allowed [10, 43, 44]. Importantly, our coarse-grained curvature tensor
can also be used to compute the local curvature tensor of surfaces for which keeping track of
the discreteness of its constituents is relevant. It is the case for instance of cell tissues. For
such systems, triangle-based methods have been developed to decompose the deformations
of flat tissues into cell contributions [45] and have contributed to understand the role of cel-
lular processes in tissue patterning [46]. For curved tissues, such method is still lacking and
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Figure 7: Principal curvatures and principal directions of curvature of the triangle-
based curvature tensor for the Lawson surface with genus 2 (triangulated by 24576
triangles).

would require to also quantify changes of the curvature tensor as the tissue deforms. Our
coarse-grained curvature tensor now provides the tool to perform such quantification.

Finally, a fast convergence of the coarse-grained curvature tensor to the smooth curvature
tensor has been demonstrated for various surfaces. Using the karambola package designed in
Ref. [22] and the code described in App. B, the coarse-grained curvature tensor of a triangu-
lated surface can be computed efficiently. Importantly, the principal directions of curvature
are computed with accuracy, as we have illustrated on Figs. 5, 6 and 7. An efficient tool is
thus available to quantify curvature on triangulated surfaces, that could be used in the context
of numerical simulation or experimental data processing, and also for computer vision and
image processing.

A Integrated curvature tensor

A.1 Computation of the integrated curvature tensor for a single triangle and its
neighbors

We recall here the definition of the integrated curvature tensor M for a smooth surface as
defined in Eq. (6):

M =

∫

P
dAc i

i n� n+

∮

C
d`νie

i � n . (22)

For a triangulated surface, one can compute the integrated curvature tensor using a parallel
body construction as discussed in the main text. One can then first compute the surface integral
term in Eq. (22). Since this term is weighted by the mean curvature, the flat part of the triangle
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with zero curvature does not contribute. The portions of sphere that regularize the corners of
the triangles yield a contribution of order ε since their area is of order ε2 while their mean
curvature goes as 1/ε. Therefore, contributions from triangle corners vanish, and only the
infinitesimal portions of cylinder regularizing the edges have non-vanishing contributions in
the limit ε→ 0, which read:

∫

P
dAn� nc i

i = lim
ε→0

∑

e∈T

∫ |e|

0

d`

∫ αe(ae−1/2)

−αe/2

εdθn� n
1
ε

, (23)

where the sum runs over the edges of triangle T . Note that we integrate over a weighted
portion of the cylinder and have therefore introduced the weighting factor ae.

The vector n is the normal vector along the portion of cylinder and is then parameterized
by the angle θ such that n= cosθ n̈e + sinθ ṅe (see Fig. 8). The surface integral thus reads:

∫

P
dAc i

i n� n=
1
4

∑

e∈T

|e|
�

(2aeαe + sinαe − sin(αe − 2aeαe))n̈e � n̈e

+ (2aeαe − sinαe + sin(αe − 2aeαe))ṅe � ṅe

− 4 sin(aeαe) sin(αe − aeαe)n̈e � ṅe

�

.

(24)

Second, the contour integral in Eq. (6) is evaluated by noting that the unit vector ν, tangent
to the regularized triangle and normal to its contour lies at the end of the portions of cylinder,
such that:

∮

C
d`νie

i � n= lim
ε→0

∑

e∈T

∫ |e|

0

d`ν(θf)� n(θf) , (25)

where θf = αe(ae − 1/2) is the final angle of the portion of cylinder in the local basis defined
by Eq. (9), and ν(θf) = n(θf +π/2) = ê× n(θf) (see Fig. 8). Note that the portions of sphere
that regularize the corners of the triangle do not contribute to the previous equation as the
contour length on each portion of sphere is of order ε and vanishes in the limit ε → 0. We
thus obtain for the contour term:
∮

C
d`νie

i � n=
1
2

∑

e∈T

|e|
�

sin(αe − 2aeαe) (n̈e � n̈e − ṅe � ṅe) + 2cos(αe − 2aeαe)n̈e � ṅe

�

.

(26)

Summing Eqs. (24) and (26) yields Eq. (12) in the main text. For a patch P of triangles, it is
clear from Eqs. (23) and (25) that the integrated curvature tensor M of the patch is given by
adding individual triangles contribution, and yields Eq. (13) in the main text.

A.2 Integrated curvature tensor for co-planar triangles

As expected, the integrated curvature tensor given by Eq. (12) vanishes for a triangle T sur-
rounded by co-planar triangles. This fact is however not obvious from Eq. (12) and we give
details here. The first two terms in the sum appearing in Eq. (12) vanish since αe = 0 for all
edges for co-planar triangles. In addition, n̈e = nT is the triangle normal and is the same for
all edges, and ṅe = νe is the unit vector normal to each edge in the plane of the triangle. The
last term in Eq. (12) thus reduces to nT �

∑

e∈T |e|νe. One can show, for instance by taking
the scalar product with νe′ and using the law of cosines, that

∑

e∈T |e|νe vanishes for any tri-
angle, This shows that the integrated curvature tensor vanishes for a triangle surrounded by
co-planar triangles.
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(a) (b)

Figure 8: Cross-sectional view of neighboring triangles in a convex (a), and con-
cave (b) configurations. The angles θi and θ f denote the lower and upper limits of
integration, respectively.

A.3 Concave decomposition

The derivation of Eq. (12) assumed a local convexity of the triangulated surface. As illustrated
in Fig. 8, the generalization to concave edges is however straightforward as it simply requires
to change the sign of αe for concave edges.

A simple illustration of this procedure occurs when considering a cylinder with triangles
disposed in the direction orthogonal to the cylinder axis, see Fig. 9. In this case, the central
triangle and the purple triangle form a concave edge for which the procedure highlighted
above must be applied.

Similarly to the parallel tiling of the cylinder presented in the main text, we can obtain the
eigenvalues of the coarse-grained curvature tensor and expand them in series of ε = `/R to
obtain:

Λ1 =
1
R
+

53ε2

288R
+O

�

ε3
�

, Λ2 =
ε

8
p

3R
−

7ε2

96R
+O

�

ε3
�

, Λ3 = −
ε

8
p

3R
−

7ε2

96R
+O

�

ε3
�

.

(27)

Note that the convergence of the second and third eigenvalues is only linear in ε, while it is
quadratic in the case of a parallel tiling (see Eq.(17)).

Figure 9: Patch of triangles on a cylinder. Tiling is orthogonal to the axis of the
cylinder.
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B C++ code for computing the triangle-based integrated curva-
ture tensor

We have extended the karambola package (https://morphometry.org/software/karambola/)
to include the computation of the coarse-grained curvature tensor, its eigenvalues and eigen-
vectors. We provide below the C++ function that computes the integrated curvature tensor on
a triangulated surface using Eq. (12). Similarly to the computation of other quantities that can
be determined using the karambola package, the integrated curvature tensor can also be com-
puted for labeled patches on the surface. If all triangles are labeled uniquely, the integrated
curvature tensor is computed for each triangle. Note that in order to obtain Figs. 5, 6 and 7,
we have computed the integrated curvature tensor of each triangle and normalized it by the
triangle area to obtain the coarse-grained curvature tensor of each triangle.

CompWiseMatrixMinkValResultType calculate_curvature(const Triangulation& surface){
//calculate c_int (integrated curvature)
CompWiseMatrixMinkValResultType c_int;
for (unsigned int l = 0; l<surface.n_triangles();l++){

double A_t = surface.area_of_triangle(l);
for (unsigned int k = 0; k<3;k++){

if(surface.ith_neighbour_of_triangle(l,k) != NEIGHBOUR_UNASSIGNED){
double A_tp= surface.area_of_triangle(surface.ith_neighbour_of_triangle(l,k));
double ar= A_t/(A_t+A_tp);
Vector n2=surface.normal_vector_of_triangle(surface.ith_neighbour_of_triangle(l,k));
Vector n1= surface.normal_vector_of_triangle(l);
double c= dot(n1,n2)/(norm(n1)*norm(n2));
assert (c <= 1.000001);
if (c>= 1) c=1.;
double alpha= acos(c);

Vector com_l = surface.com_of_triangle(l); //center of mass of triangle
Vector com_k = surface.com_of_triangle(surface.ith_neighbour_of_triangle(l,k));
Vector convex=com_l+n1-(com_k+n2);
Vector concave=com_l-n1-(com_k-n2);
if(norm(convex) < norm(concave)) alpha=-alpha;

double e_norm= surface.get_edge_length(l,k);
Vector e_c1= surface.get_pos_of_vertex(surface.ith_vertex_of_triangle(l,k));
Vector e_c2= surface.get_pos_of_vertex(surface.ith_vertex_of_triangle(l,(k+1)%3));

Vector e= (e_c2 - e_c1)/e_norm;
Vector n_a= (n1 + n2)/(norm(n1+n2));
Vector n_i= cross_product(e,n_a);

double local_value= 0;
for (unsigned int i = 0; i<3;i++){

for (unsigned int j = 0; j<=i;j++){
double term1=(2*ar*alpha+sin(alpha)+sin(alpha-2*ar*alpha)) * n_a[i]*n_a[j];
double term2=(2*ar*alpha-sin(alpha)-sin(alpha-2*ar*alpha)) * n_i[i]*n_i[j];
double term3=2*cos(ar*alpha)*cos(alpha-ar*alpha)*(n_a[i]*n_i[j]+n_a[j]*n_i[i]);
local_value= e_norm*( term1 + term2 + term3 );
c_int[surface.label_of_triangle(l)].result_(i,j) += 1/4.*local_value;}

}
}

}
}
return c_int;
}

15

https://scipost.org
https://scipost.org/SciPostPhysCore.5.1.011
https://morphometry.org/software/karambola/
https://morphometry.org/software/karambola/
https://morphometry.org/software/karambola/


SciPost Phys. Core 5, 011 (2022)

References

[1] U. Seifert, Configurations of fluid membranes and vesicles, Adv. Phys. 46, 13 (1997),
doi:10.1080/00018739700101488.

[2] M. J. Bowick and L. Giomi, Two-dimensional matter: Order, curvature and defects, Adv.
Phys. 58, 449 (2009), doi:10.1080/00018730903043166.

[3] S. Shankar, A. Souslov, M. J. Bowick, M. Cristina Marchetti and V. Vitelli, Topological
active matter, arXiv:2010.00364.

[4] J. Paulose, G. A. Vliegenthart, G. Gompper and D. R. Nelson, Fluctuating shells under pres-
sure, Proc. Natl. Acad. Sci. U.S.A. 109, 19551 (2012), doi:10.1073/pnas.1212268109.

[5] A. Mietke, F. Jülicher and I. F. Sbalzarini, Self-organized shape dynamics of active surfaces,
Proc Natl Acad Sci USA 116, 29 (2018), doi:10.1073/pnas.1810896115.

[6] H. A. Messal, S. Alt, R. M. M. Ferreira, C. Gribben, V. Min-Yi Wang, C. G. Cotoi, G. Salbreux
and A. Behrens, Tissue curvature and apicobasal mechanical tension imbalance instruct
cancer morphogenesis, Nature 566, 126 (2019), doi:10.1038/s41586-019-0891-2.

[7] W. Helfrich, Elastic properties of lipid bilayers: Theory and possible experiments, Z. Für
Naturforschung C 28, 693 (1973), doi:10.1515/znc-1973-11-1209.

[8] W. Helfrich and J. Prost, Intrinsic bending force in anisotropic membranes made of chiral
molecules, Phys. Rev. A 38, 3065 (1988), doi:10.1103/PhysRevA.38.3065.

[9] F. C. MacKintosh and T. C. Lubensky, Orientational order, topology, and vesicle shapes,
Phys. Rev. Lett. 67, 1169 (1991), doi:10.1103/PhysRevLett.67.1169.

[10] G. Salbreux and F. Jülicher, Mechanics of active surfaces, Phys. Rev. E 96, 032404 (2017),
doi:10.1103/PhysRevE.96.032404.

[11] M. Deserno, Notes on differential geometry, (2004), https://www.cmu.edu/biolphys/
deserno/pdf/diff_geom.pdf.

[12] D. Hug, Measures, curvatures and currents in convex geometry, Albert-Ludwigs-Universität
Freiburg, Germany, (2000), doi:10.6094/UNIFR/167349.

[13] R. Schneider and W. Weil, Stochastic and integral geometry, Springer Berlin Heidelberg,
Berlin, Heidelberg, ISBN 9783540788584 (2008), doi:10.1007/978-3-540-78859-1.

[14] E. B. V. Jensen and M. Kiderlen, Tensor Valuations and Their Applications in Stochastic
Geometry and Imaging, Springer International Publishing, Cham, ISBN 9783319519500
(2017), doi:10.1007/978-3-319-51951-7.

[15] Q. Li and J. Griffiths, Least squares ellipsoid specific fitting, in Geometric modeling process-
ing, IEEE Proc., 335 (2004), doi:10.1109/GMAP.2004.1290055.

[16] D. Beale, Y.-L. Yang, N. Campbell, D. Cosker and P. Hall, Fitting quadrics with a Bayesian
prior, Comp. Visual Media 2, 107 (2016), doi:10.1007/s41095-016-0041-9.

[17] G. Taubin, Estimating the tensor of curvature of a surface from a polyhedral approxi-
mation, Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., 902 (1995),
doi:10.1109/ICCV.1995.466840.

16

https://scipost.org
https://scipost.org/SciPostPhysCore.5.1.011
https://doi.org/10.1080/00018739700101488
https://doi.org/10.1080/00018730903043166
https://arxiv.org/abs/2010.00364
https://doi.org/10.1073/pnas.1212268109
https://doi.org/10.1073/pnas.1810896115
https://doi.org/10.1038/s41586-019-0891-2
https://doi.org/10.1515/znc-1973-11-1209
https://doi.org/10.1103/PhysRevA.38.3065
https://doi.org/10.1103/PhysRevLett.67.1169
https://doi.org/10.1103/PhysRevE.96.032404
https://www.cmu.edu/biolphys/deserno/pdf/diff_geom.pdf
https://www.cmu.edu/biolphys/deserno/pdf/diff_geom.pdf
https://doi.org/10.6094/UNIFR/167349
https://doi.org/10.1007/978-3-540-78859-1
https://doi.org/10.1007/978-3-319-51951-7
https://doi.org/10.1109/GMAP.2004.1290055
https://doi.org/10.1007/s41095-016-0041-9
https://doi.org/10.1109/ICCV.1995.466840


SciPost Phys. Core 5, 011 (2022)

[18] E. Hameiri and I. Shimshoni, Estimating the principal curvatures and the darboux
frame from real 3-D range data, IEEE Trans. Syst., Man, Cybern. B 33, 626 (2003),
doi:10.1109/TSMCB.2003.814304.

[19] N. Ramakrishnan, P. B. Sunil Kumar and J. H. Ipsen, Monte Carlo simulations of
fluid vesicles with in-plane orientational ordering, Phys. Rev. E 81, 041922 (2010),
doi:10.1103/PhysRevE.81.041922.

[20] K. Crane, Discrete differential geometry: An applied introduction, (2020), https://www.
cs.cmu.edu/~kmcrane/Projects/DDG/paper.pdf.

[21] K. R. Mecke, Additivity, convexity, and beyond: Applications of Minkowski functionals in
statistical physics, in Statistical physics and spatial statistics 554, Springer Berlin Heidel-
berg, ISBN 9783540677505 (2000), doi:10.1007/3-540-45043-2_6.

[22] G. E. Schröder-Turk, W. Mickel, S. C. Kapfer, F. M. Schaller, B. Breidenbach, D. Hug and
K. Mecke, Minkowski tensors of anisotropic spatial structure, New J. Phys. 15, 083028
(2013), doi:10.1088/1367-2630/15/8/083028.

[23] H. Hadwiger, Vorlesungen über Integralgeometrie, Abhdl. Math. Sem. Hambg. 17, 69
(1951).

[24] S. Alesker, Description of continuous isometry covariant valuations on convex sets, Geom.
Dedicata 74, 241 (1999), doi:10.1023/A:1005035232264.

[25] S. Alesker, Continuous rotation invariant valuations on convex sets, Ann. Math. 149, 977
(1999), doi:10.2307/121078.

[26] R. Schneider, Local tensor valuations on convex polytopes, Monatsh. Math. 171, 459
(2012), doi:10.1007/s00605-012-0430-9.

[27] D. Hug and R. Schneider, Local tensor valuations, Geom. Funct. Anal. 24, 1516 (2014),
doi:10.1007/s00039-014-0289-0.

[28] G. E. Schröder-Turk et al., Minkowski tensor shape analysis of cellular, granular and porous
structures, Adv. Mater. 23, 2535 (2011), doi:10.1002/adma.201100562.

[29] X. Bian, S. Litvinov and P. Koumoutsakos, Bending models of lipid bilayer membranes:
Spontaneous curvature and area-difference elasticity, Comput. Methods Appl. Mech. Eng.
359, 112758 (2020), doi:10.1016/j.cma.2019.112758.

Computer Methods in Applied Mechanics and Engineering

[30] F. Jülicher, The morphology of vesicles of higher topological genus: Conformal degeneracy
and conformal modes, J. Phys. II France 6, 1797 (1996), doi:10.1051/jp2:1996161.

[31] C. Beisbart, M. S. Barbosa, H. Wagner and L. da F. Costa, Extended morphometric
analysis of neuronal cells with Minkowski valuations, Eur. Phys. J. B 52, 531 (2006),
doi:10.1140/epjb/e2006-00328-1.

[32] C. Beisbart, R. Dahlke, K. Mecke and H. Wagner, Vector- and Tensor-Valued Descriptors for
Spatial Patterns, in Morphology of condensed matter, Springer Berlin Heidelberg, ISBN
9783540442035 (2002), doi:10.1007/3-540-45782-8_10.

[33] A. Kousholt and M. Kiderlen, Reconstruction of convex bodies from surface tensors, Adv.
Appl. Math. 76, 1 (2016), doi:10.1016/j.aam.2016.01.001.

17

https://scipost.org
https://scipost.org/SciPostPhysCore.5.1.011
https://doi.org/10.1109/TSMCB.2003.814304
https://doi.org/10.1103/PhysRevE.81.041922
https://www.cs.cmu.edu/~kmcrane/Projects/DDG/paper.pdf
https://www.cs.cmu.edu/~kmcrane/Projects/DDG/paper.pdf
https://doi.org/10.1007/3-540-45043-2_6
https://doi.org/10.1088/1367-2630/15/8/083028
https://doi.org/10.1023/A:1005035232264
https://doi.org/10.2307/121078
https://doi.org/10.1007/s00605-012-0430-9
https://doi.org/10.1007/s00039-014-0289-0
https://doi.org/10.1002/adma.201100562
https://doi.org/10.1016/j.cma.2019.112758
https://doi.org/10.1051/jp2:1996161
https://doi.org/10.1140/epjb/e2006-00328-1
https://doi.org/10.1007/3-540-45782-8_10
https://doi.org/10.1016/j.aam.2016.01.001


SciPost Phys. Core 5, 011 (2022)

[34] A. Kousholt, Reconstruction of n-dimensional convex bodies from surface tensors, Adv. Appl.
Math. 83, 115 (2017), doi:10.1016/j.aam.2016.09.004.

[35] H. Hansen-Goos and K. Mecke, Fundamental measure theory for inhomoge-
neous fluids of nonspherical hard particles, Phys. Rev. Lett. 102, 018302 (2009),
doi:10.1103/PhysRevLett.102.018302.

[36] H. Hansen-Goos and K. Mecke, Tensorial density functional theory for non-spherical
hard-body fluids, J. Phys.: Condens. Matter 22, 364107 (2010), doi:10.1088/0953-
8984/22/36/364107.

[37] R. Capovilla and J. Guven, Stresses in lipid membranes, J. Phys. A: Math. Gen. 35, 6233
(2002), doi:10.1088/0305-4470/35/30/302.

[38] T. Willmore, Total curvature in Riemannian geometry, Ellis Horwood, Chicester, England,
ISBN 9780853122678 (1982).

[39] H. Blaine Lawson, Complete minimal surfaces in S3, Ann. Math. 92, 335 (1970),
doi:10.2307/1970625.

[40] T. C. Lubensky and F. C. MacKintosh, Theory of “ripple” phases of lipid bilayers, Phys. Rev.
Lett. 71, 1565 (1993), doi:10.1103/PhysRevLett.71.1565.

[41] J. R. Frank and M. Kardar, Defects in nematic membranes can buckle into pseudospheres,
Phys. Rev. E 77, 041705 (2008), doi:10.1103/PhysRevE.77.041705.

[42] N. Uchida, Dynamics of orientational ordering in fluid membranes, Phys. Rev. E 66, 040902
(2002), doi:10.1103/PhysRevE.66.040902.

[43] R. G. Morris and M. Rao, Active morphogenesis of epithelial monolayers, Phys. Rev. E 100,
022413 (2019), doi:10.1103/PhysRevE.100.022413.

[44] D. A. Matoz-Fernandez, F. A. Davidson, N. R. Stanley-Wall and R. Sknepnek, Wrin-
kle patterns in active viscoelastic thin sheets, Phys. Rev. Research 2, 013165 (2020),
doi:10.1103/PhysRevResearch.2.013165.
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