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Passive odd viscoelasticity
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Active chiral viscoelastic materials exhibit elastic responses perpendicular to the applied stresses, referred
to as odd elasticity. We use a covariant formulation of viscoelasticity combined with an entropy production
analysis to show that odd elasticity is not only present in active systems but also in broad classes of passive
chiral viscoelastic fluids. In addition, we demonstrate that linear viscoelastic chiral solids require activity in
order to manifest odd elastic responses. To model the phenomenon of passive odd viscoelasticity we propose a
chiral extension of Jeffreys model. We apply our covariant formalism in order to derive the dispersion relations
of hydrodynamic modes and obtain clear imprints of odd viscoelastic behavior.
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I. INTRODUCTION

Mechanical responses to the applied external stresses are
key in the understanding of materials. Such responses can
take a simple elastic form for materials, whose microscopic
composition consists of a lattice of atoms, or a more com-
plex viscoelastic behavior for substances with a compound
mesoscopic structure. Such media include polymers [1], meta-
materials [2,3] and biomatter [4,5]. Viscoelastic behavior
manifests itself through energy dissipation when external
stress is applied and then removed. This can be understood
as a symptom of a nonvanishing viscosity and thus a fluid-like
characterization of a viscoelastic material. As a consequence,
a proper description of viscoelastic responses requires a
combination of elastic and viscous components in the defin-
ing constitutive laws. In general, this is a complicated task
with many unknown variables, which requires a phenomeno-
logical treatment. The nonequilibrium, dissipative nature of
viscoelasticity suggests that it is a transient phenomenon to
an equilibrium state that can be either a solid or a fluid. As
a result we can consider two distinct classes of materials:
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viscoelastic solids and viscoelastic fluids. If one assumes that
the relation between stress and strain is linear it is possible
to write down constitutive relations, for these two classes,
parametrized by response coefficients.

In its simplest incarnation, a linear model for solids is
known as the Kelvin-Voigt model and for fluids as the
Maxwell model. They are usually visualized in one dimension
in terms of connected springs and dashpots. The Kelvin-Voigt
solid is modeled by a spring and a damper connected in
parallel and the Maxwell fluid is modeled by a spring and
a damper connected in series. Although these models are at
the core of rheological descriptions of viscoelasticity they are
often not capable of capturing experimental stress-strain re-
sponses in more complex materials. The Maxwell model does
not describe a progressive deformation of a material under
constant stress (creep), and the Kelvin-Voigt model does not
describe stress relaxation. One way to improve this is to ac-
count for higher-order relaxations in the constitutive relations.
This can be visualized by extending the basic Kelvin-Voigt
and Maxwell models with additional springs and dashpots.
Viscoelastic models that consist of two springs and one dash-
pot are called standard linear solids or Zener models [1] and
models built from two dashpots and one spring are called
standard linear fluids or Jeffreys models [6]. One-dimensional
models can be generalized to higher dimensions, in which
the responses are controlled by tensors of coefficients that
respect symmetries of a given system. Therefore, for a class
of materials that break chirality, new parity and time-reversal
symmetry-breaking transport coefficients have to be taken
into account, even for the simple Kelvin-Voigt and Maxwell
models [7].

Chirality is an asymmetry under mirror imaging. This
asymmetry plays an important role in various biological sys-
tems [8–13], metamaterials [3,14], condensed matter [15,16],
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and high-energy physics [17]. An effective hydrodynamic
theory of systems with broken chiral symmetry in two dimen-
sions is distinguished by a new transport coefficient, namely,
Hall viscosity [18–29].

Hall viscosity can exist in a system that breaks parity and
time-reversal symmetry and is characterized by a nondissipa-
tive coefficient. It is present, for instance, in various electron
systems in the presence of background magnetic fields. These
systems are passive and break these discrete symmetries by
the presence of a magnetic field. Additionally, Hall viscosity
can also exist in chirally asymmetric active systems [27].
Active systems are maintained out of equilibrium by active
processes at small scales (e.g., caused by self-propelled or
fuel-consuming elements [30,31]). The nonequilibrium state
implies that time-reversal symmetry is broken. In contrast,
passive systems do not have small scale active processes and
relax to a thermodynamic equilibrium in the absence of exter-
nal forces, which in the absence of a magnetic field typically
obey time-reversal invariance.

Chiral active systems can also host odd elasticity. It de-
scribes elastic forces that cannot be expressed as a gradient of
elastic energy, but stem from a driving out of equilibrium [32].
Moreover, in the setting of active chiral viscoelastic media,
modeled by either the Kelvin-Voigt model or the Maxwell
model, it was recently argued that odd material properties are
governed by an interplay of Hall viscosity and an odd elastic
coefficient [7]. Signatures of odd elastic and odd viscous prop-
erties were recently investigated in experiments with starfish
embryos [33] and magnetic colloids [34], respectively. The
aim of the present work is to investigate viscoelasticity of
chiral systems beyond the simple Kelvin-Voigt and Maxwell
models. The main result of our analysis is the phenomenon
of passive odd viscoelasticity, where both the viscous and
the elastic contributions of the response exhibit odd behavior.
In particular, we show that odd viscoelasticity can exist in
passive systems with broken time-reversal symmetry. Surpris-
ingly, this implies that odd elasticity can transiently exist even
in passive systems.

Our study is based on irreversible thermodynamics
[35–37]. In this setting, the existence of an entropy cur-
rent whose divergence is enforced to be positive semidefinite
embodies a local version of the second law of thermody-
namics. This imposes nontrivial constraints on the various
transport coefficients. This approach can be incorporated in
the study of viscoelastic fluids [38–40] but traditional studies
are based on broken-symmetry variables (i.e., Goldstone fields
of spontaneous broken translations) and only describe Kelvin-
Voigt-type models [40]. To embed more complex rheology
models, such as Maxwell and Jeffreys model, into the frame-
work of viscoelastic hydrodynamics, we follow the approach
of Refs. [41,42], in which metric degrees of freedom that
describe the evolution of the lattice structure of the material
are taken into account. In Refs. [41,42] the case of parity-
even systems in three dimensions was studied in detail, in
the relativistic context. In this paper, we generalize this ap-
proach to chiral systems in two dimensions and extend it to
systems with Galilean symmetry. We explicitly demonstrate
that parity-odd transport, under appropriate entropic restric-
tions, can be incorporated into a passive chiral version ofy
Jeffreys model.

This paper is organized as follows: In Sec. II we give a
brief overview of our main results and introduce the passive
chiral Jeffreys model. In Sec. III we provide the details of
the model and present the covariant formalism together with
the conservation laws and the thermodynamic description of
local thermal equilibrium. In Sec. IV we perform a techni-
cal analysis of the entropy current and derive the constraints
on transport coefficients, constitutive relations and rheology
equations from the second law of thermodynamics. In Sec. V
we study this model more closely, in particular we look at
the modes associated with the odd viscoelastic model. In
Sec. VI we discuss some implications of our results and future
research avenues.

II. SUMMARY OF RESULTS

The purpose of this paper is to show that, using irreversible
thermodynamics, parity-breaking elastic effects can be incor-
porated into an odd extension of Jeffreys model [43–47]. The
goal of this section is to briefly outline some of the details of
this model and the consequences of our analysis.

Typically, viscoelastic models are defined via phenomeno-
logical equations specifying the time evolution of stresses τi j

in terms of the time evolution of strains Ei j , where i, j = 1, 2
are spatial Cartesian indices in two dimensions. We consider
the two-dimensional rotationally invariant case in this work.
To describe the phenomenological equations for this case we
only need four-tensors which satisfy the property

Ui jkl = Ujikl = Ui jlk . (2.1)

Isotropic tensors that do not satisfy Eq. (2.1) correspond to an
inception of torque density or a response to rotation [32,48].
We do not consider such responses in this work, as they are not
relevant for the passive viscoelastic systems that we focus on.
There are three remaining independent isotropic four-tensors
that satisfy Eq. (2.1) which are given by

ζi jkl = δi jδkl , (2.2)

ηi jkl = 1
2δk(iδ j)l − 1

2δi jδkl , (2.3)

η∗
i jkl = − 1

4 (εikδ jl + εilδ jk + ε jkδil + ε jlδik ), (2.4)

where δkl is the Kronecker delta and εkl is the Levi-Civita
tensor. We have used a shorthand notation H(i j) = Hi j +
Hji to denote the symmetric part of a general tensor Hi j .
Equation (2.2) is the trace projector, whereas Eq. (2.3) intro-
duces the traceless projector while Eq. (2.4) is a parity-odd
tensor that enables the description of both odd elasticity
and odd viscosity in two dimensions. This parity-odd tensor
is traceless and satisfies the antisymmetry property η∗

i jkl =
−η∗

kli j . In Eq. (2.4) and in the rest of this paper we use the
superscript ∗ to denote parity-odd contributions.

To characterize the models that we will soon introduce, it
is useful to decompose the stress τi j , incorporating corrections
with respect to local thermal equilibrium into an isotropic
stress τ and a shear stress τ〈i j〉. In particular the stress is
given by τi j = 1

2δi jτ + τ〈i j〉, where we have introduced the
short-hand notation A〈i j〉 = ηkl

i j Akl and A = Ak
k , holding for

any two-tensor Ai j . Here we used the Einstein summation
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FIG. 1. Diagram corresponding to the full bulk sector given in
Sec. IV D.

convention and, moreover, we have defined the contravari-
ant (upper) index as being raised with δi j . As in traditional
textbooks, it is possible to introduce the phenomenological
model of interest, which we refer to as the odd Jeffreys model,
by means of material diagrams (one for the bulk sector and
one for the shear sector). The bulk sector diagram, which
does not permit odd contributions, is depicted in Fig. 1.
The three-element representation of this constitutive equation,
composed of two dashpots and one spring is not unique.
In the case of three elements two different configurations
corresponding to fluids can be mapped to each other. The
nonuniqueness is a general feature that holds in multi-element
models. The bulk Jeffreys model’s [43–47] characteristic
equation is given by

τ̇ + στ = −αË − β̃Ė, (2.5)

where we have introduced the notation Ȧ ≡ ∂
∂t A for any tensor

object A with indices suppressed. The coefficients in Eq. (2.5)
are functions of A, B, and C introduced in Fig. 1. We refer
the reader to Appendix B for the explicit formulas. We note
that the bulk sector as determined by Eq. (2.5) does not con-
tain parity-odd terms. However, the shear sector, for which
the material diagram is depicted in Fig. 2 is given by the
characteristic equation

τ̇〈i j〉 + (
χηkl

i j + χ∗η∗kl
i j

)
τkl

= −(
γ ηkl

i j + γ ∗η∗kl
i j

)
Ëkl − (

ζηkl
i j + ζ ∗η∗kl

i j

)
Ėkl , (2.6)

which contains several parity-odd contributions. Analogous to
(2.5), all transport coefficients in the shear sector are functions
of V , V ∗, U , U ∗, W , W ∗ introduced in Fig. 2 (see Appendix B
for details).

The model (2.5) and (2.6) can be obtained from the
diagrammatic representations presented in Figs. 1 and 2 fol-
lowing analogous rules to those used in the context of electric

FIG. 2. Diagram corresponding to the shear sector. “&” refers to
a parallel connection of an odd and an even component of the same
type.

circuits. In this case the bulk coefficients σ, α, β̃ in (2.5)
and the shear coefficients χ , χ∗, γ , γ ∗, ζ , ζ ∗ are arbitrary.
However, the main goal of this paper is to embed these models
into a formal hydrodynamic framework of viscoelastic fluids.
Within this setup, requiring the second law of thermodynam-
ics to be satisfied leads to nontrivial constraints and relations
among the various coefficients.

The fact that the odd Jeffreys model allows us to incorpo-
rate odd elastic terms in the sense of Refs. [7,32] is a nontrivial
result. In fact, when considering the two models studied in
Refs. [7,32], in particular the odd Kelvin-Voigt model given
by the model equation

τ〈i j〉 = −(
φηkl

i j + φ∗η∗kl
i j

)
Ekl − (

ψηkl
i j + ψ∗η∗kl

i j

)
Ėkl , (2.7)

and the odd Maxwell model, which is equivalent to the shear
sector of Jeffreys model (2.6) but with γ and γ ∗ set to zero:1

τ̇〈i j〉 + (
χηkl

i jl + χ∗η∗kl
i j

)
τkl = −(

ζηkl
i j + ζ ∗η∗kl

i j

)
Ėkl , (2.8)

we find that some parity-odd terms are not allowed within our
framework of irreversible thermodynamics. Specifically, the
coefficients φ∗ of the odd Kelvin-Voigt model and ζ ∗ of the
odd Maxwell model are required to vanish, leaving behind
only nonzero parity-odd contributions due to odd viscosity.
Therefore, the two simpler models introduced in Refs. [7,32]
can only describe active systems and not passive ones.

III. THE ODD JEFFREYS MODEL

In this section we elucidate the necessary details of the odd
Jeffreys model discussed in the previous section. In particular,
we embed the model in a simple hydrodynamic framework
and give spatially covariant expressions for the characteristic
equations and conservation laws.

A. Strain

In Sec. II we introduced several models which depended
on the strain Ei j . We now use concepts from differential ge-
ometry and a covariant representation to define such strains.
This approach will be convenient to introduce plastic strains
in the next section via a dynamical intrinsic metric. To this
end we consider a material element with label ξ i which at
time t is found in real space at position X a [49]. This de-
fines a function X a(ξ i, t ). For instance, the label ξ i can be
defined as the position X a at an initial reference time point.
The physical space is endowed with the Euclidean metric δab

where a, b, c, . . . are spatial indices in the physical space. The
generalized coordinates ξ i are indexed by i, j, k. With this
Euclidean background metric, we introduce an induced metric
that describes the distances between material elements as they
move in time

gi j = δab∂iX
a(ξ k, t )∂ jX

b(ξ k, t ). (3.1)

The strain is then defined as the difference between this metric
and a reference metric g(0)

i j that describes the distances be-
tween material elements when the material is in an unstrained

1We provide diagrammatic constructions of these models in
Appendix B.
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FIG. 3. The vector Ni describes the motion of the fluid particles
with respect to the coordinate frame.

state, specifically,

Ei j = 1
2

(
gi j − g(0)

i j

)
. (3.2)

To track the evolution of the strain we define a covariant
derivative of the form

D

Dt
Ai...m

j...n = Ȧi...m
j...n + LN Ai...m

j...n, (3.3)

for any tensor Ai...m
j...n . LN is the Lie derivative along the vector

Ni, it is given by

LN Ai...m
j...n = Nk∂kAi...m

j...n − ∂kNiAk...m
j...n − · · · − ∂kNmAi...k

j...n

+ ∂ jN
kAi...m

k...n + · · · + ∂nNkAi...m
j...k . (3.4)

Ni describes the movement of a fluid particle with respect to
the coordinate (frame) choice in fluid space. For a change in
time δt the particle’s coordinate ξ i moves with respect to the
frame choice, i.e., the coordinate of a particle initially located
at ξ i changes to ξ i(t ) + Ni(ξ k, t )δt in a time step δt (see
Fig. 3). Given the definition (3.3), we require the reference
metric introduced in (3.2) to be covariantly conserved:

D

Dt
g(0)

i j = 0. (3.5)

We thus view the reference metric just as an auxiliary metric
that allows us to compare deformations at a given time t
with the original state of the material while simultaneously
making a straightforward connection with the notion of strain
commonly used in standard textbooks. Using (3.5) we obtain
the following identity for the strain rate:

Ki j ≡ D

Dt
Ei j = 1

2

D

Dt
gi j . (3.6)

We use these definitions to recast the model equations in a
covariant form.

B. Covariant model equations

A description of the motion of a fluid can be obtained by
attaching a set of coordinate labels X a to each element of
the fluid. The freedom in the choice of these labels corre-
sponds to different frames [50]. The velocity in any frame is

given by [49]

D

Dt
X a = ua. (3.7)

And furthermore ui = ua∂iXa. The introduction of the vector
Ni in (3.3) allows for frame choices that simplify our analysis.
As we are working with infinitesimal strains, one possible
choice, known as the comoving frame, is given by X a =
X a

(0) + wa with Ẋ a = ua so that, from Eq. (3.7), it follows that
Ni = 0. Here, wa is a small displacement vector and the scalar
X a

(0) is defined such that gi j |X a=X a
(0)

= g(0)
i j . ui = ui

(0) + δui is
the fluid velocity, where ui

(0) denotes the velocity of the fluid

in its initial state which obeys ∇iu
j
(0) = 0 such that Eq. (3.5)

is satisfied. Alternatively, one can work with the laboratory
frame in which Ni = ui and X a = δa

i ξ
i such that gi j = δi j and

Ẋ a = 0. These two choices correspond to the Lagrangian and
Eulerian formulations of fluid dynamics. Either way we find

Ki j = 1
2∇(iu j). (3.8)

The covariant derivative introduced in Eq. (3.8) is defined in
the usual way:

∇iA
k
j = ∂iA

k
j − �l

i jA
k
l + �k

ilA
l
j,

�l
i j = 1

2 glk (∂igk j + ∂ jgki − ∂kgi j ), (3.9)

for any tensor Ak
j where �l

i j is the Christoffel connection build
from the induced metric gi j . With these structures in hand, we
now covariantize the definitions of Sec. II; in particular,

ηi jkl = 1
2 gk(ig j)l − 1

2 gi jgkl , (3.10)

η∗
i jkl = − 1

4 (εikg jl + εil g jk + ε jkgil + ε jl gik ), (3.11)

A〈i j〉 = ηkl
i j Akl , A = gi jAi j . (3.12)

It is then straightforward to obtain the covariant form of the
bulk (2.5) and shear (3.14) equations for the odd Jeffreys
model which now take the form

D

Dt
τ + στ = −α

D

Dt
K − β̃K, (3.13)

D

Dt
τ〈i j〉 + (

χηkl
i j + χ∗η∗kl

i j

)
τkl

= −(
γ ηkl

i j + γ ∗η∗kl
i j

) D

Dt
Kkl − (

ζηkl
i j + ζ ∗η∗kl

i j

)
Kkl .

(3.14)

In the following sections we choose the simple laboratory
frame where Ni = ui and gi j = δi j and we can thus use the
partial derivative ∂i instead of the covariant derivative ∇i.

C. Conservation laws

The simplest way to embed Jeffreys model in a frame-
work of viscoelasticity is to treat the stress τi j as dynamical
degrees whose evolution is determined by (3.13) and (3.14).
Furthermore, one supplements the system with additional con-
servation laws that determine the evolution of hydrodynamic
fields. In particular, the evolution of the fluid velocity ui in-
troduced in (3.8), the temperature T and the mass chemical

054607-4



PASSIVE ODD VISCOELASTICITY PHYSICAL REVIEW E 105, 054607 (2022)

potential μ associated with mass density are respectively de-
termined by

ρu̇i + ρu j∂ ju
i + ∂ jt

i j = 0, (3.15)

ε̇ + ∂ j (εu j ) + ∂ j
(

j j
ε + uit

i j
) = 0, (3.16)

ρ̇ + ∂ j (ρu j ) = 0. (3.17)

Here ε and ρ are the energy and mass density, respectively,
which are functions of T, μ. We note that one can find dif-
ferent sign conventions for the stress in the literature. We
furthermore defined

t i j = pgi j + τ i j, ε = ε0 + 1
2ρu2, (3.18)

where p is the equilibrium pressure, ε0 is the part of the energy
density that excludes the kinetic energy, and u2 = uiui. Both
p and ε0 are functions of T and μ. In addition, we introduced
the heat current j j

ε , which contains gradient corrections that
do not play a role in the analysis that we will carry out in this
section. In Sec. IV we show how we can explicitly derive the
form of j j

ε . The conservation laws presented in (3.15)–(3.17)
are typical of systems with Galilean symmetry.

IV. ENTROPY ANALYSIS

In the previous sections we treated the stress τi j as dynam-
ical degrees of freedom and stipulated its dynamics by means
of phenomenological material diagrams. In this section we
derive Jeffreys model from the second law of thermodynam-
ics. In particular, we derive the constitutive relations, rheology
equations, and entropy constraints that arise from implement-
ing the second law of thermodynamics (4.2) following the
framework of Refs. [41]. Using these general constitutive
relations we demonstrate how to obtain the odd Jeffreys
model that we introduced and studied in the previous sec-
tions. We also show how other simpler models (Kelvin-Voigt
and Maxwell) arise as limiting cases of our general analysis,
showing that parity-odd elastic terms are not compatible with
entropy constraints, thus forbidding a passive incarnation of
these models.

A. Intrinsic metric

Traditional hydrodynamic frameworks that implement the
second law of thermodynamics in the context of viscoelastic
fluids are based on introducing Goldstone fields of spon-
taneously broken translation symmetry [38–40]. However,
as demonstrated in Ref. [40], these formulations only al-
low for Kelvin-Voigt-type models and not, for instance,
Jeffreys model. As such, we work with the formulation of
Refs. [41,42,49] in which metric degrees of freedom are in-
troduced.

Within this framework, a different notion of strain that also
describes plastic deformations can be defined by introducing
an evolving intrinsic metric g̃i j (ξ k, t ) [41,42]. This metric
measures the deformation of the distances between fluid parti-
cles as they are experienced due to bond configurations of the
material. The difference between the induced metric and the
intrinsic metric is a form of strain that is distinct from (3.2),

namely,

κi j = 1
2 (gi j − g̃i j ). (4.1)

When a material is deformed and a strain is created, this
intrinsic metric evolves as to cause (4.1) to vanish. This can
be understood as the bond configuration of the material, once
the system is fully relaxed, adapting to the induced metric
after the applied deformation. This change of the intrinsic
metric is called a plastic deformation. The intrinsic metric g̃i j

prior to any deformation is equal to the reference metric g(0)
i j

introduced in (3.2).

B. Thermodynamics and the second law

In this framework, the hydrodynamic fields consist of the
fluid velocity ui, temperature T , mass chemical potential μ,
and the intrinsic metric g̃i j . The evolution of ui, T , μ is again
determined by the conservation laws (3.15)–(3.17) while the
dynamics of g̃i j can be derived by supplementing the system
with the second law of thermodynamics,

ṡ + ∂ j (su j ) + ∂ j j j
s ≡ ṡ + ∂ js

j = �, (4.2)

where s is the entropy density and si is the entropy current
given by si = sui + j j

s . j j
s = j j

ε /T includes gradient correc-
tions that will be determined2 and � is required to satisfy � �
0. Local thermal equilibrium of our hydrodynamic theory
naturally includes elasticity [40], which can be made explicit
by considering the pressure

p(T, μ, κi j ) = p f (T, μ) − 1
2λ1κ

〈i j〉κ〈i j〉 − 1
4λ2κ

2, (4.3)

where p f (T, μ) is the fluid part of the equation of state and
is independent of strain. The coefficients λ1 and λ2 are con-
strained to be positive due to mechanical stability [41] and
denote the shear and bulk modulus respectively [51]. To make
this section more compact, we define

−λ1κ
〈i j〉κ〈i j〉 − 1

2λ2κ
2 ≡ ri jκi j . (4.4)

From Eq. (4.3) it follows that in thermal equilibrium we have
the following thermodynamic identities:

dε0 = T ds + μdρ − ri jdκi j,

d p = sdT + ρdμ + ri jdκi j,

ε0 = −p + T s + ρμ,

(4.5)

characteristic of a system with Galilean symmetry. Instead of
treating the stresses τi j as dynamical degrees of freedom, the
second law (4.2) allows one to derive constitutive relations for
τi j in terms of ui, T , μ, κi j and rheological equations for the
evolution of κi j . When combined, Jeffreys model is obtained
as we will show in the next sections.

2The identity j j
s = j j

ε /T follows from a convenient choice of
hydrodynamic frame. A consequence of the same choice of hydro-
dynamic frame is the absence of gradient corrections to the mass
conservation (3.17).
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C. Constraints from entropy production

We now focus on the second law of thermodynamics (4.2)
and use it to derive constitutive relations and rheology equa-
tions. Using the conservation laws (3.15)–(3.17) together with
the thermodynamic relations (4.5) we explicitly evaluate the
left-hand side of (4.2) and obtain [51]

� = −τ i j Ki j

T
− 1

T 2
ji
ε∂iT − λ1

T
κ 〈i j〉 D

Dt
κ〈i j〉 − λ2

2T
κ

D

Dt
κ.

(4.6)

All terms on the right-hand side of Eq. (4.6) should be un-
derstood as being gradient suppressed. In particular, we are
assuming the following power counting scheme3

κi j, ∂iu j, ∂iT = O(∂ ), (4.7)

which implies that we are treating the strain, gradients of the
fluid velocity,4 and temperature to be of the same relative
order.

Imposing � � 0 as required by the second law allows us to
determine the constitutive relations for τi j and ji

ε as well as the
form of the rheology equations for the shear D

Dt κ〈i j〉 and bulk
D
Dt κ sectors.5 This analysis can be split into parity-even and
parity-odd contributions as well as in scalar, vector and trace-
less tensor contributions to the constitutive relations. In the
parity-even sector we obtain the following contributions:6,7

ji
ε = − L

T 2
∂ iT, (4.8)

(
τ〈i j〉

− λ1
T

D
Dt κ〈i j〉

)
=

(
K1 −G
G K2

)(− 1
T K〈i j〉
κ〈i j〉

)
, (4.9)

(
τ

− λ2
T

D
Dt κ

)
=

(
M1 −F
F M2

)(−K
T

κ

)
, (4.10)

where the coefficients L, G, K1, K2, F , M1, M2 are functions
of T and μ. In order for the condition � � 0 to be satisfied,
we impose

L, K1, K2, M1, M2 � 0. (4.11)

3Gradients of the mass chemical potential ∂iμ are also of order
O(∂ ). However, they do not explicitly appear in our analysis due to
the choice of hydrodynamic frame.

4Equation (4.7) means that both vorticity, which is the antisym-
metrized fluid velocity gradient, as well as strain rate, which is the
symmetrized velocity gradient, are first order.

5Note that, while κi j ≈ O(∂ ), terms of the form κ D
Dt κ are of order

O(∂2) [41].
6In both the parity-even and parity-odd sectors we have not in-

cluded noncanonical terms besides the elastic terms. These potential
additional terms correspond to hydrostatic transport as discussed in
Ref. [52] for the Galilean case and more extensively in Refs. [37,53]
for the relativistic case.

7It is possible to do a rescaling such that the coefficients F and G,
when positive, can be set to the coefficients λ1 and λ2 which allows
one to arrive at the result in Ref. [51].

Coefficients F , G are arbitrary and denote nondissipative
contributions to the constitutive relations [30]. In turn, the
parity-odd contributions take the form

ji
ε = − β

T 2
εi

j∂
jT, (4.12)

(
τ〈i j〉

− λ1
T

D
Dt κ〈i j〉

)
= η∗kl

i j

(
α1 −α3

α3 α2

)(− 1
T Kkl

κkl

)
, (4.13)

where β, α1, α2 are arbitrary functions of T and μ and char-
acterize nondissipative transport. In turn, α3 is an off-diagonal
dissipative coefficient, function of T and μ, that in order to
have � � 0 must satisfy

α2
3 � K1K2. (4.14)

Lastly, time-reversal invariance has been taken into account
while defining the K , M, and α matrices [30,51], leading to
the vanishing of the off-diagonal components in the case of
the K and M matrices and a vanishing symmetric off-diagonal
contribution to the α matrix.

D. Viscoelastic models

Given the constitutive relations and rheology equations de-
rived in Sec. IV C we are in a position of deriving the models
that we discussed throughout this paper. Using (4.9)–(4.13),
we find the constitutive relations

τ〈i j〉 = −(
K1η

kl
i j + α1η

∗kl
i j

) 1

T
Kkl − (

Gηkl
i j + α3η

∗kl
i j

)
κkl ,

τ = −M1

T
K − Fκ, (4.15)

as well as the rheology equations

−λ1

T

D

Dt
κ〈i j〉 = −(

Gηkl
i j + α3η

∗kl
i j

) 1

T
Kkl

+ (
K2η

kl
i j + α2η

∗kl
i j

)
κkl ,

−λ2

T

D

Dt
κ = −F

T
K + M2κ.

(4.16)

This rheology equation describes the evolution of the strain
(4.1), including the evolution of the intrinsic metric g̃i j . The
intrinsic metric is a dynamical degree of freedom which
makes the system non-Markovian and therefore difficult to
deal with.

The most obvious way to simplify the set of Eqs. (4.15) and
(4.16) is by constraining the intrinsic metric to be nondynam-
ical, which corresponds to the elastic limit. This is achieved
by requiring the intrinsic metric to satisfy

D

Dt
g̃i j = 0. (4.17)

In this context, g̃i j = g(0)
i j , where g(0)

i j was introduced in (3.2),
and the notions of strain we introduced in Sec. III A coincide,
namely, Ei j = κi j . The condition (4.17) fixes almost all coef-
ficients appearing in (4.16). In fact, using Eqs. (3.3) and (4.1)
we find

K2 = α3 = α2 = M2 = 0,

G = λ1, F = λ2. (4.18)
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We note that (4.17) forces the coefficients M2, K2 to vanish.
Imposing (4.18) in the constitutive relations (4.15) leads to

τ〈i j〉 = −(
K1η

kl
i j + α1η

∗kl
i j

) 1

T
Kkl − λ1η

kl
i j κkl ,

τ = −M1
1

T
K − λ2κ. (4.19)

Comparing this with the defining equation of the shear sector
of the odd Kelvin-Voigt model (2.7) we identify

φ = λ1, φ∗ = 0, ψ = K1, ψ∗ = α1. (4.20)

As advertised in Sec. II, the entropy constraints require that
φ∗ = 0 and so no odd elastic contributions to the consti-
tutive relations for the stresses are allowed. The coefficient
ψ∗ is allowed and characterizes odd viscosity. As noted in
Refs. [7,32] a nonzero φ∗ coefficient can be added to the
model in the case of an active system but here we note that
this cannot be the case in a passive one.

Having discussed this simpler case in which the condition
(4.17) is enforced, we turn to the most general case. It is
convenient to begin by focusing on the bulk sector of (4.15)
and (4.16) involving τ and κ as this sector does not contain
parity-odd contributions. Acting with D/Dt on the bulk sector
of Eq. (4.15) and using the bulk sector of (4.16) leads to

D

Dt
τ + M2T

λ2
τ = −M1

T

D

Dt
K + −M1M2 − F 2

λ2
K. (4.21)

This equation corresponds to the bulk sector of Jeffreys model
[43–47]. Indeed, comparing Eq. (4.21) with Eq. (2.5) leads to

σ = M2T

λ2
, β̃ = M1M2 + F 2

λ2
, α = M1

T
. (4.22)

We now consider the shear sector of Eqs. (4.15) and (4.16)
which involves parity-odd terms. To find an equation of the
form (3.14) it is useful to make use of the following identities:

ηi jklη
∗klmn = η∗mn

i j , (4.23)

ηi jklη
klmn = ηmn

i j , (4.24)

η∗
i jklη

∗klmn = −ηmn
i j , (4.25)

which allows one to find the equation

ηi j
mn = C1η

i j
kl − C2η

∗i j
kl

C2
1 + C2

2

(
C1η

kl
mn + C2η

∗kl
mn

)
, (4.26)

which holds for any coefficient C1 and C2. With this in mind,
we follow the same steps as in the bulk sector, and eventually
find

D

Dt
τ〈i j〉 = {−Gηkl

i j −α3η
∗kl
i j

}[−�
(
�ηmn

kl +�∗η∗mn
kl

) 1

T

D

Dt
Kmn

− T �

λ1

(
K2η

mn
kl + α2η

∗mn
kl

)

×
{

− Gηop
mnτop + α3η

∗op
mn τop

+ (
�ηop

mn + �∗η∗op
mn

) 1

T
Kop

}

+ T

λ1

{
Gηmn

kl + α3η
∗mn
kl

} 1

T
Kmn

]
, (4.27)

where we defined the coefficients

� = 1

G2 + α2
3

,

� = −GK1 − α3α1,

�∗ = −α1G + K1α3.

(4.28)

Comparing (4.27) with the characteristic equation of the shear
sector of Jeffreys model (3.14) we identify the following co-
efficients:

χ = T

λ1
K2, χ∗ = T

λ1
α2,

γ = K1

T
, γ ∗ = α1

T
,

ζ = 1

λ1

(−α1α2 − α2
3 + G2 + K1K2

)
,

ζ ∗ = 1

λ1
(α2K1 + α1K2 + 2α3G). (4.29)

This is the general form of Jeffreys model compatible with en-
tropy constraints. An interesting limit of Jeffreys model with
coefficients (4.29) is obtained by setting α1 = K1 = 0, which,
due to (4.14), implies α3 = 0. This leads to γ = γ ∗ = ζ ∗ = 0.
Comparing this case with the characteristic equation of the
odd Maxwell model (2.8) leads to

χ = T

λ1
K2, χ∗ = T

λ1
α2, ζ = 1

λ1
G2. (4.30)

Also, as advertised in Sec. II the coefficient ζ ∗ = 0 vanishes
for the odd Maxwell model due to entropy constraints.

V. MODES

We are now in a position to study the collective modes
corresponding to linear fluctuations of the two-dimensional
parity-odd model presented in Sec. II. We impose the entropy
constraints of Sec. IV on the coefficients. For the calculation
details we refer the reader to the Appendix C. We find the
following shear and bulk damped modes due to the relaxation
in the rheology equation

ω1,2 = −i(χ ± iχ∗) − ik2
γ ± iγ ∗ − ζ±iζ ∗

χ±iχ∗

2ρ(0)
+ O(k3), (5.1)

ω3 = −iσ − ik2 −β̃ + ασ

2σρ(0)
+ O(k3). (5.2)

In addition we observe the following sound modes and a
diffusive mode,

ω4,5 = ±k
√

ξ − ik2 ζχ + ζ ∗χ∗

4ρ(0)(χ2 + χ∗2)
− ik2 β̃

4σρ(0)
+ O(k3),

(5.3)

ω6 = −ik2 ζ ∗χ∗ + ζχ

2ρ(0)(χ2 + χ∗2)
+ O(k3), (5.4)

where ξ is defined as a coefficient in the equation of state:

p = p0 + ξ (ρ − ρ(0) ). (5.5)

On general grounds we expect systems satisfying the second
law of thermodynamics to be stable. The collective modes
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are stable if their diffusive and damping contributions have
negative imaginary parts. To see this explicitly we need to
impose the constraints coming form the second law of ther-
modynamics as given by Eqs. (4.22) and (4.29). Due to the
constraints on the signs of the transport coefficients the stabil-
ity of the modes in Eqs. (5.1) and (5.2) follows immediately.
However, showing the stability of modes given by Eqs. (5.3)
and (5.4) is more involved. We plug Eqs. (4.22) and (4.29)
into the complex diffusive terms, which leads to the following
condition:

ζχ + ζ ∗χ∗ = T
[
G2K2 + 2α2α3G + K1

(
α2

2 + K2
2

) − α2
3K2

]
λ2

1

.

(5.6)

To show that Eq. (5.6) must be non-negative we use the
entropy constraint of Eq. (4.14). This constraint allows us
to define α3 = ±(

√
K1K2 − υ ), with 0 � υ � √

K1K2 and to-
gether with Eq. (4.11) we find

ζχ + ζ ∗χ∗ = T (G
√

K2 ± α2
√

K1)
2

λ2
1

+ υ
T (K2(2

√
K1K2 − υ ) ∓ 2α2G)

λ2
1

�T
(G

√
K2)

2 ± 2(
√

K1K2 − υ )α2G + (α2
√

K1)
2

λ2
1

+ υ
T K2

√
K1K2

λ2
1

� 0. (5.7)

It follows that, for small wave numbers, stability is guaranteed
for all six modes. Lastly, we consider the limiting case υ = 0
leading to

ζχ + ζ ∗χ∗ = T (G
√

K2 ± α2
√

K1)
2

λ2
1

. (5.8)

For G
√

K2 = ∓α2
√

K1 we see that the modes have a vanish-
ing imaginary part at the lowest order and thus the entropy
constraints (4.14) still lead to stability.

VI. DISCUSSION

We have demonstrated that, even though odd viscoelas-
tic solids can only be active, odd viscoelastic fluids, which
contain transient odd elasticity, can exist without an active
driving. To achieve this we have discussed an extension of
rheological Jeffreys model to chiral active media. We have
furthermore shown that such responses leave clear imprints
in the linear spectrum of fluctuations. Here, parity-odd elastic
terms are analogous to transport coefficients such as Hall
viscosity and Hall conductivity studied in the context of quan-
tum matter. Our motivation, however, has been driven by the
relevance of odd viscoelastic responses in biological systems
and metamaterials.

Metamaterials are artificially engineered structures, in
which the properties of their constituents can be appropri-
ately designed. One example of metamaterials consists of
colloidal suspensions. It has been demonstrated that odd trans-
port coefficients can be probed in a colloidal suspension of

rotating particles suspended throughout a substance of larger
molecules [27]. Such active suspensions require a constant
transfer of angular momentum provided by an external mag-
netic field, which presents an experimental challenge. Our
analysis suggests that, since activity is not necessary to probe
odd transport coefficients, a passive colloidal suspension of
chiral objects such as granular particles [8] or helical nanorib-
bons [54] is enough to see imprints of both odd viscosity and
odd elasticity.

Parity-odd elastic responses are also relevant for chiral sys-
tems in quantum matter and high-energy physics in which the
system may exhibit Lorentzian rather than Galilean symmetry.
In fact, the method by which we first obtained some of the
results presented in this paper was to first consider parity-odd
responses in a higher-dimensional relativistic theory and later
dimensionally reduce to arrive at a hydrodynamic theory with
Galilean symmetry as in Ref. [52]. These details will be given
in another presentation.
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APPENDIX A: DERIVATION OF VISCOELASTIC
DISSIPATION RATE

In this Appendix we derive the dissipation rate presented in
Eq. (4.6). We start by rewriting the thermodynamical identi-
ties presented in Sec. IV B. Because we work with Galilean
symmetry, the particle number density n can be related to
momentum density ρ via the particle mass m, i.e., ρ = mn,
turning the momentum density into mass density. Additionally
we can absorb the velocity dependence into the mass chemical
potential μ by taking μ = ν/m + 1

2 u2
i . Here, ν is an ordinary

chemical potential that couples to n. We will now rewrite the
thermodynamic identities from Sec. III C so that the velocity
dependence is explicitly shown; that is,

d p = sdT + πidui + ndν + ri jdκi j, (A1)

dε = T ds + uidπ i + νdn − ri jdκi j, (A2)

ε = T s − p + uiπ
i + νn. (A3)

Here we defined the momentum π i = ρui. Note that these
thermodynamic identities are not written in terms of ε0 but
in terms of ε = ε0 + 1

2 uiπ
i. We also rewrite the conservation

laws in Sec. III C as follows:

π̇ i + ∂ j (π
jui ) + ∂ jt

i j = 0, (A4)

ε̇ + ∂ j (εu j ) + ∂ j
(

j j
ε + uit

i j
) = 0, (A5)
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ṅ + ∂ j (nu j ) = 0, (A6)

ρ = mn. (A7)

Using the first law in Eq. (A2) as well as the conservation laws
we find the rate of entropy equation

ṡ = 1

T
{ε̇ − uiπ̇

i − ωṅ + ri j κ̇i j}

= 1

T

{ − ∂i
(
εui + t i ju j + ji

(ε)

) + ω∂ j (nu j )

+ ui∂ j (π
iu j ) + ui∂ j (pgi j + τ i j ) + ri j κ̇i j

}

= −∂is
i + 1

T

{
∂i[u

i(−ε − p + T s + νn + πiu
i )]

+ u j (−π i∂ jui − s∂ jT + ∂ j p − n∂ jν) − τ i j∂iu j

+ T ji
(ε)∂i

(
1

T

)
+ ri j κ̇i j

}
. (A8)

Using Eqs. (A1) and (A3) as well as Eq. (4.2) we obtain

T � = −τ i j∂iu j + T ji
(ε)∂i

(
1

T

)
+ ri j (κ̇i j + uk∂kκi j ). (A9)

Due to the power counting introduced in Eq. (4.7), we can use
the perturbative identity [41,49]

κ̇i j + uk∂kκi j = D

Dt
κi j + O(∂2), (A10)

to simplify the results. This identity allows us to take the
elastic limit in Eq. (4.17). A nonperturbative covariant study
of strain has been performed [40] and will be extended to
plastic deformations in a future work. Considering Eqs. (A10)
and (A8) we derive Eq. (4.6).

APPENDIX B: DIAGRAMS

In this Appendix we consider a diagrammatic representa-
tion of the models that we introduced in Sec. II. This can be
achieved by working with diagrams of the type presented in
Fig. 1 in terms of electric circuits. Within this setting, the
stress plays the role of the electric current, i.e., when drawing
components in series, the stress going through the components
is the same for every component. Similarly, the stress is di-
vided when the components are connected in parallel. Several
components can be considered in such circuits but those that
we focus on are the spring and the dashpot. A spring plays
the role akin to a resistance, which gives an amount of stress
that is proportional to the strain, and the strain thus plays the
role of potential. The dashpot also gives stress, but now it is
induced by the time-derivative of the strain.

To begin with we consider the circuit that we introduced in
Fig. 1 which represents the bulk sector of the Jeffreys model.
Following the circuit rules the characteristic equations are

τ = τ(1) + τ(2), E = E(1) + E(2),

τ(1) = −AE(1), τ(1) = −BK(2), τ(2) = −CK, (B1)

where A, B, C are arbitrary coefficients associated with each
component in the diagram of Fig. 1. We note that, while the
total stress τ and the total strain E are physical quantities, the

FIG. 4. Material diagram corresponding to the passive odd
Kelvin-Voigt model.

interpretation of the individual stresses τ(1), τ(2) and individual
strains E(1), E(2) is not always clear and such quantities should
be thought of as auxiliary quantities. Given (B1) we act with
D/Dt on τ(1) and use the remaining identities to find

D

Dt
τ + A

B
τ = −C

D

Dt
K −

(
A + AC

B

)
K, (B2)

which when compared with Eq. (3.13) we identify

σ = A

B
, α = C, β̃ = A + AC

B
. (B3)

Before addressing the shear sector of the Jeffreys model, we
consider the simpler case of the passive Kelvin-Voigt model
represented in Fig. 4, from which we can immediately extract
the constitutive equation

τ〈i j〉 = −(
Nηkl

i j + N∗η∗kl
i j

)
Kkl − Mηkl

i j Ekl . (B4)

Comparing this constitutive equation with Eq. (2.7) we iden-
tify

ψ = N, ψ∗ = N∗, φ = M, φ∗ = 0. (B5)

Moving on to the shear sector of Jeffreys model represented
in Fig. 2, the circuit equations take the more intricate form:

E〈i j〉 = E (1)
〈i j〉 + E (2)

〈i j〉,

τ〈i j〉 = τ
(1)
〈i j〉 + τ

(2)
〈i j〉,

τ
(1)
〈i j〉 = −(

Uηkl
i j + U ∗η∗kl

i j

)
E (1)

kl ,

τ
(1)
〈i j〉 = −(

V ηkl
i j + V ∗η∗kl

i j

)
K (2)

kl ,

τ
(2)
〈i j〉 = −(

W ηkl
i j + W ∗η∗kl

i j

)
Kkl .

(B6)

As in the bulk sector, we can manipulate (B6) in order to find
the rheology equation

D

Dt
τ〈i j〉 = −(

W ηkl
i j + W ∗η∗kl

i j

) D

Dt
Kkl

− (
Uηkl

i j + U ∗η∗kl
i j

)[
Kkl + �

(
V ηmn

kl − V ∗η∗mn
kl

)
× (

τmn + W ηop
mnKop + W ∗η∗op

mn Kop
)]

, (B7)

where, for convenience, we have defined

� = 1

V 2 + V ∗2
. (B8)
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FIG. 5. Diagram corresponding to the passive odd Maxwell
model. The “&” refers to a parallel connection of an odd and an even
component of the same type.

Comparing Eq. (B7) with Eq. (3.14) one readily identifies

χ = �(UV + U ∗V ∗), χ∗ = �(−UV ∗ + U ∗V ),

γ = W, γ ∗ = W ∗,

ζ = U + �(UVW − U ∗VW ∗ + U ∗V ∗W + UV ∗W ∗),

ζ ∗ = U ∗ + �(U ∗VW + UVW ∗ − UV ∗W + U ∗V ∗W ∗).
(B9)

It is also possible to invert the relations in Eq. (B9) and
although we do not do this here explicitly as it is a very heavy
operation, we have verified numerically that there are always
real solutions. It is interesting to note that Eq. (B9) implies that
χ∗ can only be nonzero if both even and odd components are
nonvanishing, whereas all other components can be nonzero
if only odd or only even components are nonzero.

A limiting case of this model can be attained if we take W ,
W ∗, U ∗ to be zero. In this case we obtain the diagram given in
Fig. 5. This diagram corresponds to the passive odd Maxwell
model introduced in Eq. (2.8) with the following coefficients:

χ = UV

V 2 + V ∗2
, χ∗ = − UV ∗

V 2 + V ∗2
, γ = 0,

γ ∗ = 0, ζ = U, ζ ∗ = 0. (B10)

APPENDIX C: COMPUTATION OF THE MODES

In this Appendix we give computational details about the
modes of Sec. V. The linear perturbations we consider are δρ,
δui, and δτi j , i.e., we consider mass, fluid velocity and stress
fluctuations. For simplicity we do not consider energy density
fluctuations and therefore will not require working with the
energy conservation equation. We use Eqs. (3.15) and (3.17)

as well as Eqs. (2.7), and (2.8) to get the following fluctuation
equations:

∂tδτ〈i j〉 = −χηi jklδτkl − χ∗η∗
i jklδτkl − γ ηi jkl∂tδKkl

− γ ∗η∗
i jklδKkl − ζηi jklδKkl − ζ ∗η∗

i jklδKkl , (C1)

∂tδτ = −σδτ − α∂tδK − β̃δK, (C2)

∂tδρ = −ρ(0)∂iδui, (C3)

ρ(0)∂tδui = −ξ∂iδρ − ∂ jδτi j . (C4)

Since we have a rotationally invariant system we are free to
fix the spatial dependence of the fluctuations to be in the
x direction without loss of generality. We can write these
linearized equations in a compact form as

(Z1 + Z2∂t + Z3∂x )v = 0. (C5)

The vector and matrices in Eq. (C5) are given by

v =

⎛
⎜⎜⎜⎜⎜⎝

δτ〈xx〉
δτxy
1
2δτ

δρ

δux

δuy

⎞
⎟⎟⎟⎟⎟⎠

, Z1 =

⎛
⎜⎜⎜⎜⎜⎝

χ −χ∗ 0 0 0 0
χ∗ χ 0 0 0 0
0 0 σ 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

,

(C6)

Z2 = diag(1, 1, 1, 1, ρ(0), ρ(0) ), (C7)

Z3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1
2 (ζ + γ ∂t ) − 1

2 (ζ ∗ + γ ∗∂t )

0 0 0 0 1
2 (ζ ∗ + γ ∗∂t ) 1

2 (ζ + γ ∂t )

0 0 0 0 1
2 (β̃ + α∂t ) 0

0 0 0 0 ρ(0) 0

1 0 1 ξ 0 0

0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(C8)

The dispersion is found by considering plane waves of the
form ≈e−iωt+ikx and imposing det(M ) = 0 with

M = Z1 + (−iω)Z2 + ikZ3(k, ω). (C9)

We then need to solve the following equation:

det (M ) = (−iω)6ρ2
(0) + · · · = 0, (C10)

which has six solutions for ω. They are presented up to the
second order in k in Sec. V.
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