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Abstract. The nature of the transition to collective motion in assemblies of aligning self-
propelled particles remains a long-standing matter of debate. In this article, we focus on
dry active matter and show that weak fluctuations suffice to generically turn second-order
mean-field transitions into a ‘discontinuous’ coexistence scenario. Our theory shows how
fluctuations induce a density-dependence of the polar-field mass, even when this effect is
absent at mean-field level. In turn, this dependency on density triggers a feedback loop
between ordering and advection that ultimately leads to an inhomogeneous transition to
collective motion and the emergence of non-linear travelling ‘flocks’. Importantly, we show
that such a fluctuation-induced first order transition is present in both metric models, in which
particles align with neighbors within a finite distance, and in topological ones, in which
alignment is not based on relative distances. We compute analytically the noise-induced
renormalization of the polar-field mass using stochastic calculus, which we further back up
by a one-loop field-theoretical analysis. Finally, we confirm our analytical predictions by
numerical simulations of fluctuating hydrodynamics as well as of topological microscopic
models with either k-nearest neighbors or Voronoi alignment.
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Flocking is an emergent nonequilibrium phenomenon in which interactions between
microscopic agents produce collective motion at large scales. This phenomenon is observed
in a plethora of natural systems such as flocks of starlings [1] or human crowds [2]
as well as in artificial systems ranging from self-propelled colloids [3, 4] and shaken
grains [5] to driven filaments [6]. From a theoretical perspective, flocking models typically
include three ingredients: agents are self-propelled, they align with each other, and their

ar
X

iv
:2

40
2.

05
07

8v
1 

 [
co

nd
-m

at
.s

of
t]

  7
 F

eb
 2

02
4



Fluctuation-Induced First Order Transition to Collective Motion 2

orientations experience some form of noise [7, 8]. Over the years, such models have proved
relevant in fields as diverse as animal behavior [9, 10, 11], virtual entertainment [12, 13],
biology [6, 14, 15, 16, 17], and swarm robotics [18, 19].

Collective motion occurs when the aligning interactions overcome the noise-induced
randomization of the agent orientations. The question of how this transition occurs, which
is of both historical and paradigmatic value, has led to a wealth of theoretical [20, 21, 22, 23,
24, 25], numerical [7, 26, 27], and experimental works [28, 5, 6, 3]. It is best understood in the
context of metric models, in which particles align with neighbors within a finite distance. At
the macroscopic level, the nature of the transition is now well established [26, 27, 25]: It takes
the form of a discontinuous ‘first-order’ transition between a disordered gas/paramagnetic
phase and a polar-ordered liquid/ferromagnetic phase, which are separated in the phase
diagram by a coexistence region [29]. The origin of this discontinuous transition has been
traced back to a density-dependent polar-field mass, which triggers a linear instability of the
homogeneous ordered state close to the transition and leads to the formation of non-linear
travelling structures [22, 30, 25, 31, 32]. Notice, however, that the nature of the transition is
still the topic of ongoing research. For instance, metric alignment interactions that are non-
monotonic in the density were recently suggested to induce a second-order transition at finite
density using active lattice gases with built-in diffusive scalings [33].

Metric free systems, in which interactions between agents are not decided based on
their relative distance, form another important class of flocking models. These models,
often referred to as topological, play an important role thanks to their relevance to studies
of groups of animals [10, 34, 35, 36, 37] or pedestrians [38], where visual cues dominate
metric ones. They are also the natural choice to model confluent tissues where topological
neighborhoods determine interactions [39, 40, 41, 16, 42]. In topological systems, mean-
field descriptions of Voronoi-based [43] and k-nearest-neighbor models [44] both lead to a
density-independent polar-field mass, hence predicting a continuous onset of order where
travelling bands remain absent. This result is compatible with the observation that doubling
the distance between all particles, and hence reducing the particle density, does not impact the
aligning dynamics. Topological models are thus expected to be much less sensitive to density
variations and they have been predicted to belong to a universality class distinct from that of
metric models [45, 43, 44, 36].

However, this conclusion has been recently challenged [46], thus triggering a debate
regarding the nature of the transition to collective motion in topological models. The main
point addressed in Ref. [46] is the impact of fluctuations on the mean-field descriptions of
topological models. Dressing mean field models with a weak noise has indeed been shown
to induce a density-dependent renormalization of the polar-field mass, which in turns should
trigger a discontinuous transition to collective motion. In this article, we review, detail and
extend the results of Ref. [46]. In particular, Ref. [46] reported the emergence of non-linear
traveling bands for flocking models in which particles align with their k-nearest neighbors,
but it did not tackle the case of Voronoi neighbors, leaving the door open to a different
phenomenology. In this article, we show that an active Ising model in which active particle
interact with their Voronoi neighbors also displays the non-linear traveling bands that are
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typical of the first-order scenario. While this does not close the debate on whether any
topological model will undergo such a discontinuous scenario, it further strengthens the idea
that the latter is the rule, independently of whether the alignment is metric or topological.
Furthermore, we complement the analytical approach developed in [46] by a field-theoretical
one-loop perturbation theory, which yields consistent results. We also perform a detailed study
of finite size effects and show that the critical size to observe bands is inversely proportional
to the derivative of the polar-field mass with respect to the density: systems with a weakly
density-dependent polar-field mass will feature a very large critical size. This explains the
difficulty in characterizing the nature of the transition to collective motion in topological
models, in which this density-dependence is weak. In particular, while we report the direct
numerical observation of non-linear bands for an active Ising model with Voronoi-based
alignment, its Vicsek-based counterpart resisted our numerical efforts. Our evidence for the
discontinuous nature of the transition in this model thus remain circumstantial.

Outline: We first start by introducing in Sec. 1 the models that will be studied throughout
this article, which are variations of the Vicsek Model (VM) and of the Active Ising Model
(AIM), including both their topological and metric versions. Then, we review in Sec. 2
the mean-field theory of the AIM. We present in Sec. 2.1 a simple method to build the
mean-field equations and we show how their predictions fail in the presence of noise in
Sec. 2.2. To better understand the emergence of the discontinuous scenario, we then show
in Sec. 3 that the minimal ingredients leading to the linear instability of the homogeneous
ordered phase are a density-dependent polar-field mass and the advection of the density
field by the polar one. We then show analytically in Sec. 4 that such a density-dependent
polar-field mass is generically generated by complementing the mean-field description of
the AIM by fluctuations. We present two complementary approaches to derive the noise-
induced density-dependent renormalization of the polar-field mass in the one-dimensional
mean-field description of the AIM (Sec. 4.1 and 4.2), and show these results to also hold in
two dimensions (Sec. 4.3). We then extend our analysis to topological AIMs in Sec. 5, and to
Vicsek-like models in Sec. 6. Throughout this article, many numerical results are presented
and the corresponding numerical simulations are detailed in Appendix F. We note that several
of our simulations are implemented in one dimension where it is well known that flocks are
metastable and ultimately undergo reversals [47, 25, 48]. All our simulations were carried
out using simulation times shorter than the average time between reversals, to focus on the
nature of the transition and not on this otherwise interesting phenomenon. Finally, we stress
that part of our numerical and theoretical results have already been announced in a shorter
account [46]. Everything which is not explicitly described as such is new.

1. Metric and topological flocking models

Historically, the emergence of collective motion was first studied as a phase transition in the
Vicsek Model [7]. In this two-dimensional model, one considers self-propelled point-like
particles carrying unit propulsion vectors ui and moving in an Lx × Ly domain with periodic
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boundary conditions. At each time-step, the particles align according to

arg
[
ui

]
→ arg

[∑
j∈Ni

uj

]
+ ση , (1)

where η is a noise uniformly drawn in [−π, π] ‡. In practice, the set Ni depends on the current
configuration of the particles and can describe any type of alignment, be it metric, in which
case particles align with neighbors within a finite distance, or topological, where interactions
between particles are not decided based on their relative distances. In this article, we will
consider three distinct cases: metric alignment up to a distance r0 [7], topological alignment
between k-nearest neighbors [10], and topological alignment between Voronoi neighbors [45].
For the metric alignment, the set Ni is defined as

Ni = {j such that |rj − ri| < r0} , (2)

where r0 is the interaction range. For the k-nearest-neighbor alignment, it is given by

Ni = {set of k-nearest neighbors of particle i} . (3)

For the alignment between Voronoi neighbors it is given by

Ni = {set of Voronoi neighbors of particle i} . (4)

Historically, the metric version (2) of the VM has been the first studied [7], while the
topological ones (3)-(4) were introduced later [43, 44, 49]. The nature of the phase transition
to collective motion in these models has been a topic of long-standing debate and interest.
In the metric case (2), the transition was first described as a continuous ferromagnetic-like
transition taking the system from a homogeneous disordered phase to a homogeneous ordered
one [7]. Later, the transition was instead shown to be discontinuous, with the emergence of
an inhomogeneous phase separating the disordered and ordered phases [26]. This phase was
missed in early studies because the transition is only weakly first-order: one has to consider
system sizes above a large—but finite—critical length to observe the travelling flocks. For
smaller systems, the transition appears critical. For the topological cases, (3) and (4), the
flocking transition was also first reported as continuous and no travelling flocks were observed
in early studies, despite the use of large systems [43, 44]. Therefore, it seemed that metric
and topological flocking models could belong to two different universality classes, leading to
different transitions to collective motion.

To assess the genericity of these results and to allow for analytical progress, another
flocking model was introduced: the Active Ising Model (AIM) [25]. In the (off-lattice version
of the) AIM, the continuous orientation vectors ui (O2 symmetry) of the VM are replaced
by discrete ones (Z2 symmetry): each particle carries an Ising spin σi = ±1 indicating its
orientation ±ux, with ux the unit vector in the x-direction. Particles move in an Lx × Ly

domain and the position ri(t) of the i-th particle at time t evolves according to

ṙi(t) = vσi(t)ux +
√
2Dηi(t) , (5)

‡ Note that, alternatively, one may also consider adding a vectorial noise inside the arg function.
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where ηi is a Gaussian white noise such that ⟨ηi,α(t)ηj,β(t′)⟩ = δijδαβδ(t− t′)§, v is the self-
propulsion speed, and D is a translational diffusivity. The spin σi of the i-th particle then flips
at a rate

W (σi → −σi, t) = Γe−βσm̄i({ri(t)}) , (6)

where Γ is a constant rate, β is an ‘inverse temperature’ that controls the strength of the
alignment, and the field m̄i({ri}) is given by

m̄i({ri}) =
∑
j∈Ni

σj

/∑
j∈Ni

1 . (7)

Note that the field m̄i depends on the configuration of the system through the set Ni, which
characterizes the type of alignment: metric for (2), or topological for k-nearest neighbors
alignment (3) and Voronoi alignment (4). In this article, we will show that, independently
of the alignment, be it metric or topological, the transition to collective motion generically
remains discontinuous in the AIM. This result had already been reported for the metric [25]
and k-nearest-neighbors [46] cases, but the Voronoi case is new.

2. The Mean-field description of the AIM

Let us start by providing a simple derivation of the mean-field theory of the AIM that can be
used for any aligning field m̄i and thus any choice of Ni.

2.1. A simple mean-field approach

To construct a mean-field description of aligning active particles, we first consider the case of
non-interacting particles whose orientations experience alignment with an external field m̄(r).
Then, a mean-field description of the system is obtained by replacing this external field by a
functional of the particle orientational and density field, m(r) and ρ(r), respectively. The
choice of m̄(r, [ρ,m]) then allows describing a variety of aligning interactions, be they metric
or topological.

Let us show how to proceed in the case of the AIM. In Eq. (6), we replace the many-body
aligning field m̄i({ri}) with an external field m̄(r) and obtain

W (σi → −σi) = e−βσm̄(r) , (8)

where we have set Γ = 1 without loss of generality. The dynamics (5) then becomes non-
interacting and the one-body probability density P (r, σ, t) to find a particle at position r at
time t with spin σ evolves as:

∂tP (r, σ, t) = D∇2P (r, σ, t)− ∂x[vσP (r, σ, t)]− e−βσm̄(r)P (r, σ, t) + eβσm̄(r)P (r,−σ, t) .

(9)

§ Here, Greek indices refer to spatial coordinates while Latin letters refer to particle numbers.
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One then introduces the one-body density and magnetization fields, ρ(r, t) = P (r,−1, t) +

P (r, 1, t) and m(r, t) = P (r, 1, t) − P (r,−1, t), respectively. As frequently done in active
matter, we refer below to m as the polar field. Equation (9) is then equivalent to the joint
evolution equations for ρ(r, t) and m(r, t) given by:

∂tρ =D∇2ρ− ∂x(vm) , (10a)

∂tm =D∇2m− ∂x(vρ) + F(ρ,m, m̄) , (10b)

where F is given by

F(ρ,m, m̄) = 2ρ sinh(βm̄)− 2m cosh(βm̄) . (11)

To turn Eq. (10) into a mean-field description of our microscopic model, we now replace the
external field m̄(r) by a functional of the fields ρ and m. In the case of metric alignment (2),
m̄(r) corresponds to

m̄(r) =
m(r)
ρ(r)

, (12)

while its expression for topological models will be discussed in Sec. 5. We can now simplify
the expression of F in (11) at the onset of order by performing a Taylor expansion up to third
order in m̄

F(ρ,m) = 2ρ

(
βm̄+

β3m̄3

6

)
− 2m

(
1 +

β2m̄2

2

)
. (13)

Inserting (12) into (13) allows rewriting the mean-field dynamics (10b) at the onset of order
as

∂tρ =D∇2ρ− ∂x(vm) , (14a)

∂tm =D∇2m− ∂x(vρ)− αm− γ
m3

ρ2
, (14b)

where α = 2(1− β) is the ‘mass’ of the polar field m and γ = 2
(

β2

2
− β3

6

)
.

The similarity between Eq. (14b) and the Landau theory of the equilibrium Ising model
naturally leads us to identify α as α ∝ T − Tc. When α ≥ 0, the sole homogeneous
solution to Eq. (14) is ρ(r) = ρ0 and m(r) = 0, which we refer to as the “disordered high-
temperature phase”. On the contrary, when α < 0, a second homogeneous solution emerges:

ρ(r) = ρ0 and m(r) = m0 = ρ0

√
|α|
γ

. We refer to this phase as the “low-temperature
ordered phase”. Importantly, we see that the mean-field theory predicts a constant “critical
temperature” β−1 = 1, independent of the average density ρ0 of the system.

2.2. Failure of the mean-field theory

Let us now show that the mean-field hydrodynamics (14) fails at correctly describing the
transition to collective motion observed in the AIM. To do so, we start by performing a linear
stability analysis of the homogeneous phases of (14) at the onset of order.
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For simplicity, and without loss of generality, we perform the study in one dimension
and rewrite Eq. (14) in a dimensionless form as:

∂t̃ρ = ∂x̃x̃ρ− ∂x̃m (15a)

∂t̃m = ∂x̃x̃m− ∂x̃ρ− α̃m− γ̃
m3

ρ2
, (15b)

where we used the dimensionless variables x̃ = xv/D, t̃ = tv2/D, and we defined
α̃ = Dα/v2 and γ̃ = Dγ/v2. In the following, we drop the tilde to lighten the notation.

Considering a perturbation around the homogeneous ordered profile, ρ(x, t) = ρ0 +

δρ(x, t) and m(x, t) = m0 + δm(x, t), the linearized dynamics of the perturbations δm and
δρ in Fourier space then reads

∂t

(
δρq
δmq

)
=

(
−q2 −iq

−iq − 2α
√
|α|/γ −q2 + 2α

)(
δρq
δmq

)
, (16)

where we have used the relation m0 = ρ0
√
|α|/γ. The system is linearly unstable whenever

the growth rate of the perturbation is positive, i.e. when the matrix in Eq. (16) has an
eigenvalue with a positive real part. Painful but straightforward algebra detailed in App. B.1
shows that this never happens when α is a constant, independent of the value of the density
field ρ0. The homogeneous ordered solution is thus always linearly stable close to the onset
of order.

On the contrary, microscopic simulations of Eq. (2) contradict this prediction. They
instead show that the ordered phase is unstable close to the transition, where travelling flocks
are observed [50]. The mean-field description Eq. (14) of the metric AIM thus fails to
capture the first-order nature of the transition. A natural culprit for this failure is the effect of
fluctuations, which are hitherto neglected at mean-field level. To confirm this hypothesis,
we carried out simulations of the mean-field evolution (14) supplemented by fluctuations
according to

∂tρ = D∇2ρ− v∂xm, (17a)

∂tm = D∇2m− v∂xρ−F(ρ,m) +
√
2σρ η , (17b)

where η is a Gaussian white noise of variance ⟨η(x, t)η(y, t′)⟩ = δ(x − y)δ(t − t′) and
σ controls the strength of the fluctuations. As shown in Fig. 1, the continuous transition
predicted in the mean-field case (σ = 0) is instead replaced by the standard first order
scenario [25, 50] and the emergence of travelling-band solutions. Therefore, including
fluctuations to the mean-field evolution (14) allows recovering the phenomenology observed
in the microscopic simulations.

Before we quantify how fluctuations dress the mean-field dynamics to yield a
discontinuous transition in Sec. 4, we first investigate in Sec. 3 the minimal ingredients of a
hydrodynamic theory that suffice to make the ordered phase unstable near the onset of order.
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Figure 1. Numerical simulations of (17a)-(17b). Top left: Average magnetization as α

is varied. The transition occurs at a value αc < 0, shifted from the mean-field prediction
αc = 0 (green line). At the onset of order, inhomogeneous profiles (black squares) separate
homogeneous ordered and disordered phases (blue dots). Parameters: D = v = γ = σ = 1,
dx = 0.5, dt = 0.01, Lx = 400, Ly = 40, ρ0 ≡ N/(LxLy) = 1.1. Bottom: A snapshot close
to the transition shows an ordered travelling band in a disordered background. Top right: The
corresponding density and magnetization fields averaged along y. Parameters: same as before
up to Ly = 100, dx = 0.1, α = −0.9. Figure adapted from [46].

3. First-order transition to collective motion: mechanism and finite-size effects

As mentioned in the introduction, the linear instability of homogeneous ordered profiles close
to the onset of order can be connected to the density-dependence of the linear term entering
the dynamics of the average polar field (denoted by α in Eq. (13)) [22, 30, 25, 31, 32]. As we
show in Sec. 3.1, the presence of a density-dependent α and of the advection of the density
by the polar field are indeed sufficient to generate an instability of the ordered phase at its
onset, independently of the sign of α′(ρ0). We then restrict our analysis to the hydrodynamic
theory of the AIM in Sec. 3.2 and show that, indeed, a density-dependent α suffices to
generate a linear instability. This allows us to address in Sec. 3.3 the importance of finite-
size effects, by showing that the critical size above which this instability can be seen diverges
as Lc ∼ 1/|α′(ρ0)| when α′(ρ0) → 0: the weaker the density-dependency of α with ρ, the
larger the system needs to be for the discontinuous nature of the transition to be seen.

3.1. The origin of the ordered-phase instability

We consider a minimal model in which, to model self-propulsion, the density field is advected
by the magnetization field and we choose an ordering dynamics with a density-dependent
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2q
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m0 δm(x)
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δρ̇ < 0
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π
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π
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3π
2q

m0 δm(x)
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δρ̇ < 0

Figure 2. Sketch of the fate of an initial fluctuation δm of the magnetization field, when
α′(ρ) < 0 (left) or α′(ρ) > 0 (right). The initial fluctuation triggers an increase of the
density field ahead of its maxima and a decrease in its wake. Close to the onset of order
δm ≃ −α′(ρ0)δρ so that δm remains constant at its maxima, but it is amplified either ahead
of them (α′ < 0, left panel) or behind them (α′ > 0, right panel). In both cases, the
initial fluctuation is amplified and the sign of α′(ρ0) only determines the direction in which it
propagates.

linear term:

ρ̇ = −v∂xm , ṁ = −α(ρ)m− Γm3 . (18)

Let us consider the impact of a small perturbation δm = ϵ sin(qx) on a homogeneous ordered
profile ρ = ρ0, m = m0 =

√
−α/Γ (See Fig. 2). A positive fluctuation of δm enhances the

rightward motion of the particle while a negative fluctuation favors leftward motion so that
δρ is enhanced ahead of the perturbation and decreased behind its maxima. Mathematically,
since ρ̇ = −vϵq cos(qx), ρ(x) develops an out-of-phase response to δm that vanishes only at
the extrema of δm. To linear order, ∂tδm = 2αδm − α′(ρ0)δρ so that, close to the onset of
order, ∂tδm ≃ −α′(ρ0)δρ. If α′(ρ0) < 0, δm follows δρ and increases ahead of its maxima—
where it remains constant since δρ vanishes there—leading to the rightward propagation and
to the amplification of δm (Fig. 2, left panel). If α′(ρ0) < 0, δm increases behind its maxima,
leading to a leftward propagation of the fluctuation, which is again amplified (Fig. 2, right
panel). In both cases, an initial perturbation is necessarily amplified, leading to a linear
instability.

Equation (18) is of course too simple to capture the full transition of flocking models,
but it captures the main ingredient of the linear instability of the ordered phase: a fluctuation
of the polar field leads to an out-of-phase fluctuation of the critical temperature. In turns,
this leads to an amplification of the initial fluctuation of order, either ahead or behind of its
initial maxima. Advection of the density by the polar field and a density-dependent critical
temperature are thus sufficient ingredients to prevent a continuous transition.

3.2. Linear stability analysis of the renormalized AIM

We now discuss in more details the instability leading to the emergence of travelling flocks
at the onset of order for the metric Active Ising Model. As highlighted in Sec. 3.1, the only
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missing ingredient preventing the formation of flocks in the mean-field description (14) is
a density-dependent linear Landau term α(ρ). As suggested in [25] and shown in [46],
fluctuations indeed dress the mean-field value of α by density-dependent corrections. The
derivation of such corrections is detailed in Sec. 4. For now, we simply postulate that the
main effect of fluctuations on the mean-field Eq. (14) is the addition of an unspecified density-
dependent polar-field mass:

∂tρ =D∇2ρ− ∂x(vm) , (19a)

∂tm =D∇2m− ∂x(vρ)− α(ρ)m− γ
m3

ρ2
. (19b)

To study the emergence of flocks, we then perform a linear stability analysis of the
homogeneous ordered fixed points of Eq. (19), detailed in App. B.1. As expected from
Sec. 3.1, the necessary and sufficient condition for a linear instability of the ordered phase
at onset reads

α′(ρ0)
2 > 0 . (20)

The homogeneous ordered solution is thus unstable as soon α′(ρ0) ̸= 0. Let us now discuss
the critical system size beyond which this instability can be observed.

3.3. Finite-size effects

We have shown in Sec. 3.2 that, in the presence of a density-dependent polar-field mass, the
evolution of the hydrodynamic Eq. (19) describing the metric AIM exhibits an instability
heralding the formation of travelling flocks. The linear instability detailed in App. B.1
however tells us that this instability happens at a finite wavenumber q and is therefore system-
size dependent: it can be prevented in small systems. Indeed, the first unstable mode q∗ is
such that the instability can be observed provided the system size L verifies

L > L∗ =
2π

q∗
≃

4π
√

γ(2 + 5|α0|)√
|α0|2(4− 8γ)− 4|α0|(γ + α′

0ρ0) + (α′
0ρ0)

2
, (21)

which simplifies to L∗ ≃ 4π
√
2γ/(ρ0|α′

0|) at the onset of order where |α0| ≪ 1. L∗ is larger
for weaker density dependence of α and eventually diverges in the limit where α′

0 → 0.
Even though non-linear effects play an important role in the formation of the traveling

bands [31, 32], it is natural to expect that L∗ could provide a good estimate of the typical
system size above which traveling bands may be observed. To test this idea, we simulated
Eq. (19) close to the onset of order, using a density-dependent linear term given by α(ρ) =

a0 + a1/ρ. The results are displayed in Fig. 3, which compares L∗ with the minimal system
size required to observe non-linear traveling flocks. We note that L∗, as given in Eq. (21),
correctly captures the scaling of the critical system size above which bands are observed over
several orders of magnitude∥.

∥ We stress that L∗ is, however, only an order-of-magnitude estimate and we do not expect an exact agreement.
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Figure 3. Linear instability and finite-size effects in the evolution of the metric AIM, Eq. (19),
in the presence of a density-dependent polar-field mass modeled as α(ρ) = a0 + a1/ρ. a.
Phase diagram obtained by simulating Eq. (19) for different system sizes L and values of
|α′(ρ0)|. Blue circles (respectively red squares) indicate a steady state with homogeneous
density (resp. bands). Solid black line shows the estimation of the critical length L∗ obtained
from Eq. (21). b. Snapshot of the phase-separated density field ρ(x), in the steady state for
L > L∗ (red diamond in panel a). c. Snapshot of the homogeneous density field ρ(x), in
the steady state for L < L∗ (blue triangle in panel a). Parameters: γ = 1, a0 = −ε − 2

√
ε,

a1 = 1, ρ0 = 1/(2
√
ε) and ε = [1/1000, 1/350, 1/100, 1/35, 1/10, 1/2].

4. Fluctuation-Induced First-Order Transition in the metric AIM

In this section, we study how fluctuations renormalize the mean-field hydrodynamics of the
metric AIM (14). In Sec. 4.1, we first follow [46] and use stochastic calculus to compute
the leading-order corrections in the noise strength to the mean-field dynamics. Then, in
Sec. 4.2, we propose an alternative derivation using a path integral perturbative approach.
Both methods coherently lead to the same result: the mass of the polar field is renormalized
by fluctuations in a density-dependent way. Together with the results of Sec. 3, we thus
conclude that the metric AIM undergoes a fluctuation-induced first order transition (FIFOT)
to collective motion. Finally, we show that these results extend to two dimensions in Sec. 4.3.

4.1. Renormalization of the mean-field AIM

In this section, we compute to leading order in the noise strength the dynamics of the average
density and magnetization fields starting from the mean-field dynamics for the metric AIM
complemented by a Gaussian noise, i.e. Eq. (17). To facilitate our analysis, we first detail
the derivation in 1D before discussing the 2D case in Sec. 4.3. Our starting point is thus the
Itō-stochastic differential equations

∂tρ = D∂xxρ− v∂xm, (22a)

∂tm = D∂xxm− v∂xρ−F(ρ,m) +
√

2σρ η , (22b)
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where η(x, t) is a zero-mean delta-correlated Gaussian white noise field and F(ρ,m) =

αm + γm3/ρ2. Note that, hereafter, ρ(x, t) and m(x, t) represent fluctuating fields. The
noise acting on m(x, t) is multiplicative; it describes the fluctuations of a sum over ∝ ρ

particles and we take it proportional to
√
ρ. Note that we could also complement Eq. (22a)

by a conserved noise. In App. B.6, we show that including such a noise does not alter our
results, in agreement with the intuition that this conserved noise should be subdominant at
large scales.

To assess the role of fluctuations, we construct the dynamics of the average fields
ρ̃(x, t) = ⟨ρ(x, t)⟩ and m̃(x, t) = ⟨m(x, t)⟩ to leading order in the noise strength σ. Denoting
by ρ0(x, t) and m0(x, t) the solution of Eq. (22) in the absence of noise (i.e. when σ = 0),
we introduce the deviations ∆ρ and ∆m from these mean-field solutions and expand them in
powers of σ1/2, which will prove below to be a correct scaling for the series:

∆ρ = ρ− ρ0 = σ
1
2 δρ1 + σδρ2 + · · · , (23a)

∆m = m−m0 = σ
1
2 δm1 + σδm2 + · · · . (23b)

Note that the δρk and δmk are stochastic fields while ρ0 and m0 are deterministic ones.
The dynamics of δρk and δmk can then be obtained at arbitrary order in k by inserting

the expansion (23) into Eq. (22) and equating terms of order σk/2. Using this systematic
expansion, we show in App. B.2 that the dynamics of the average fields ρ̃(x, t) and m̃(x, t) is
given, to first order in σ, by:

∂tρ̃ =D∂xxρ̃− v∂xm̃ , (24a)

∂tm̃ =D∂xxm̃− v∂xρ̃−F(ρ̃, m̃)− σ
∂2F
∂m2

(
⟨δm2

1⟩ − ⟨δm1⟩2

2

)
− σ

∂2F
∂ρ2

(
⟨δρ21⟩ − ⟨δρ1⟩2

2

)
− σ

∂2F
∂m∂ρ

(⟨δm1δρ1⟩ − ⟨δm1⟩⟨δρ1⟩) ,
(24b)

where the derivatives of F are evaluated at ρ̃, m̃. In Eq. (24b), we see that the fluctuations
modify the mean-field expression of F . In order to compute this fluctuation-induced
renormalization, we need to evaluate the correlators involving δρ1 and δm1. To perform
this computation, we assume that we are far enough from the linear instability so that δρ1
and δm1 are fast modes which relax on length-scales and timescales much smaller than the
ones relevant for ρ0 and m0. Under this assumption, ρ0(x, t) and m0(x, t) are considered
as constant in time and space when computing the correlators in terms of ρ0 and m0 and
their dependency on x and t is re-established a posteriori in the final expression. Using these
assumptions, we show in App. B.3 that the correlators rapidly relax to

⟨δm2
1⟩ =

ρ0
2v

√
2
u
+
√
1 + u

2 + u
− 3γD

v3

u√
1+u

+
√
2(2+3u)

u3/2

4(u+ 2)2
m2

0

ρ0
+O(m3

0) , (25a)

⟨δρ21⟩ =
ρ0
2v

√
2
u
− 1√

1+u

2 + u
+O(m2

0) , (25b)

⟨δρ1δm1⟩ =0 +O(m2
0) , (25c)
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0 1 2 3 4
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−
ρ
√
|α
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a. b.

Figure 4. a. Averaged magnetization in the low temperature phase as α is varied. The dots are
obtained from numerical simulations of (22) while the green line is the mean-field prediction
m =

√
|α|/γρ and the red line is the renormalized prediction (27a). Parameters: D = 1,

v = 1, γ = 1, ρ = 1. b. Renormalized correction to mean-field m̃−
√
|α|/γρ as a function of

the noise strength σ. Blue dots are obtained from numerical simulations of (22), while the red
line is the renormalized prediction (27a). Parameters: D = 1, v = 1, ρ = 1, γ = 1, α = 4.

where u = αD/v2. Note that in (25) we discarded higher-order terms in m0 since we are
interested at the onset of collective motion where m0 ≪ 1.

Inserting the correlators (25a)-(25b) into Eq. (24b) and discarding terms beyond order
m̃3, we finally obtain the renormalized dynamics for m̃, valid up to order σ, which reads

∂tm̃ =D∂xxm̃− v∂xρ̃− α̂(ρ̃)m̃− γ̂(ρ̃)
m̃3

ρ̃2
, (26a)

with the renormalized Landau coefficients α̂(ρ̃) and γ̂(ρ̃) given by

γ̂(ρ̃) =γ +
3σγ

2vρ̃

√
2
u
− 1√

1+u

u+ 2
− 9σγ2D

4v3ρ̃

(
u√
1+u

+
√
2(2+3u)

u3/2

)
(u+ 2)2

, (26b)

α̂(ρ̃) =α +
3σγ

2ρ̃v

√
2/u+

√
1 + u

2 + u
, (26c)

with u = αD/v2. Fluctuations have thus, to order σ, dressed α and γ into α̂ and γ̂

respectively. Crucially, we remark that the linear mass α̂ now depends explicitly on the density
in Eq. (26c). According to the stability analysis performed in Sec. 3, a density-dependent α
turns the continuous transition predicted by the mean-field evolution (14) into a first-order
phase transition exhibiting travelling flocks near the onset of order. The derivation above thus
explains why the numerical simulations of Eq. (17) led to the first order scenario reported in
Fig. 1.

In addition to accounting for the nature of the transition, our perturbation theory in the
noise strength also allows us to predict how the fluctuations in Eq. (22) renormalizes the mean-
field average magnetization in the ordered phase. As detailed in App. B.4, the leading-order
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correction in σ to the average magnetization is given by

m̃ =

√
|α|
γ
ρ0 − σ

3
√
γ

2
√
2D|α|

fw

(
v2(γ − |α|)
2D|α|γ

,
v2

2Dγ

)
, (27a)

where fw(s, u) is defined as

fw(s, u) =

∫ +∞

−∞

dq̃

2π

s (1 + 2q̃2) + (1 + 2q̃2)2 + 4uq̃2

s (1 + 2q̃2)2 + (1 + q̃2)
[
(1 + 2q̃2)2 + 4uq̃2

] . (27b)

As shown in Fig. 4, our prediction (27a) quantitatively match—without any fitting
parameter—the numerical measurement of the magnetization in the low temperature phase,
as long as α is large enough that the system is far away from the transition.

In the next section, we show that the results derived here are consistent with a
perturbation theory based on the dynamical action corresponding to our stochastic dynamics.
While the framework presented here is appealing due to its simplicity, field-theoretical
methods are more straightforwardly extended, for instance to higher order in the noise
strength.

4.2. AIM: Field-theoretic version

In this section, we present a field-theoretical derivation of the fluctuation-induced
renormalization of α in Eq. (22). A path-integral representation of the coupled Langevin
equations (22a) and (22b) can be obtained using the Martin–Siggia–Rose–De Dominicis–
Janssen (MSRDJ) formalism [51], such that the average of an observable A[ρ,m] is obtained
as

⟨A[ρ,m]⟩ =
∫

DρDρ̂DmDm̂A[ρ,m]e−S[ρ,ρ̂,m,m̂] , (28a)

where we have introduced the response fields m̂ and ρ̂. The action S reads

S[ρ, ρ̂,m, m̂] =

∫
x,t

m̂

[
∂tm−D∂xxm+ v∂xρ+ αm+

γ

ρ2
m3 − σρm̂

]
+

∫
x,t

ρ̂ [∂tρ−D∂xxρ+ v∂xm] , (28b)

where the space and time dependence of the fields ρ, ρ̂,m, m̂ is implicit. The action can
be simplified by considering an expansion around the homogeneous density, ρ(x, t) =

ρ0 + δρ(x, t) with ρ0 ̸= 0, and by performing explicitly the integral over ρ̂. This is best
done in Fourier space, where we find:

δρ(q, ω) =
−iqv

Dq2 − iω
m(q, ω) . (29)

The action S can then be expressed as S = S0 + Sint, where Sint is the interaction part while
S0 is the Gaussian part. The later is given by

S0 =
1

2

∫
Q

Mi(−Q)HijMj(Q) . (30)
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In (30), we have introduced the short-hand notation Q = (q, ω),
∫
Q

= (2π)−2
∫
dqdω,

Mi(Q) = (m(Q), m̂(Q))i, and adopted the implicit summation over repeated indices. The
inverse of the Gaussian kernel Hij is the 2× 2 matrix of the bare correlators:

(H−1)ij =

(
⟨m(Q)m(−Q)⟩0 ⟨m(Q)m̂(−Q)⟩0
⟨m̂(Q)m(−Q)⟩0 ⟨m̂(Q)m̂(−Q)⟩0

)
ij

. (31)

It will prove convenient to define the bare propagator G0 and the bare correlation function C0

as:

⟨m(Q1)m̂(Q2)⟩0 = δ(Q1 +Q2)G0(Q1) , G0(Q) =
(
−iω +Dq21 + α + V (Q)

)−1
, (32a)

⟨m(Q1)m(Q2)⟩0 = δ(Q1 +Q2)C0(Q1) , C0(Q) = 2σρ0G0(Q)G0(−Q) , (32b)

with V (Q) = q2v/(Dq2 − iω). We also introduce a diagrammatic notation:

G0(Q) =
Q

, C0(Q) =
Q −Q

(33)

The interaction part of the action Sint is given by

Sint = S(σ) +
∞∑
k=0

S
(γ)
k , (34a)

S(σ) = −σ

∫
Q1,Q2,Q3

m̂(Q1)m̂(Q2)δρ(Q3)δ

(∑
i

Qi

)
, (34b)

S
(γ)
k = (k + 1)(−1)k

γ

ρ20

∫
Q1,··· ,Q4+k

δ

(
4+k∑
i=1

Qi

)
m̂(Q1)m(Q2)m(Q3)m(Q4)

k∏
j=0

δρ(Q4+j)

ρ0
,

(34c)

from which we deduce the (amputated) interaction vertices

W (σ)(Q1, Q2, Q3) =
Q1

Q2

Q3

= σ
iq3v

Dq23 − iω3

δ(Q1 +Q2 +Q3) , (35a)

W
(γ)
0 (Q1, · · · , Q4+k) =

Q1

Q2

Q3

Q4

=
γ

ρ20
δ(Q1 +Q2 +Q3 +Q4) , (35b)

W
(γ)
k (Q1, · · · , Q4+k) =

Q1

Q2

Q3

Qk+4

... = (k + 1)(−1)k
γ

ρ2+k
0

δ

(
4+k∑
i=1

Qi

)[
k∏

j=0

−iqjv

Dq2j − iωj

]sym
.

(35c)
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In (35c), [·]sym indicates that the vertex must be symmetrized with respect to the momenta
Q2, · · · , Q4+k, since the corresponding legs are all represented by a solid line while only k of
them bear a nontrivial momentum structure.

In the limit of small noise σ → 0, a perturbative expansion close to the Gaussian action
can be performed. The dressed response function can therefore be obtained perturbatively as

⟨m(Q1)m̂(Q2)⟩ = δ(Q1 +Q2)G(Q1) =

∫
DmDm̂m(Q)m̂(−Q)e−S0−Sint ,

= ⟨m(Q1)m̂(Q2)⟩0 − ⟨
∫
Q

m(Q)m̂(−Q)Sint⟩0 + · · · .

(36)

The mass renormalization is then deduced from the inverse propagator G−1 at vanishing
momentum α̂ − α = G−1(P = 0), where G−1 is obtained from Dyson’s equation as
G−1(P ) = G−1

0 (P ) − Σ(P ). In the later, the so-called self-energy Σ(P ) can be computed
from the diagrammatic expansion

Σ(P ) =
P P

Q −Q

+ O
(
σ2
)
. (37)

Importantly, the only vertex that can contribute at first order in σ is W (γ)
0 , hence simplifying

tremendously the computation despite the infinitely many vertices W
(γ)
k that could have

contributed. All in all, we only have to compute a single integral to obtain the mass
renormalization

α̂− α = Σ(0) = 3

∫
Q

W
(γ)
0 (0, 0, Q,−Q)C0(Q) +O

(
σ2
)

=
3σγ

ρ0

√
2v2 +

√
Dα(v2 +Dα)

2
√
Dα(2v2 +Dα)

+O
(
σ2
)
,

(38)

which gives a result identical to the one obtained in Sec. 4.1.
Note that the perturbative expansion presented in this section is systematic and can be

extended to higher (loop) order. Our two perturbation theories thus consistently show how
fluctuations make α density-dependent and lead to the same renormalized evolution of the
metric AIM given by Eq. (19).

4.3. AIM: The 2d case

In this section, we show that the results obtained in Secs. 4.1 and 4.2 are also valid in
dimension 2: the renormalized linear mass α̂ is also density-dependent in this case. Starting
from Eq. (17), the perturbative method employed in 4.1 can be conducted in two dimensions
as well, and Eqs. (24a)-(24b) remain valid (up to replacing ∂xx by ∇2). However, due to the
additional dimension, the stochastic evolution of the fields δm1 and δρ1 is changed, as well as
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the correlators ⟨δm2
1⟩, ⟨δρ21⟩ and ⟨δm1δρ1⟩. As shown in App. B.7, they now read

⟨δm2
1⟩ =

ρ0α

v2
h1

(
αD

v2

)
+O(m2

0) , ⟨δρ21⟩ =
ρ0α

v2
h2

(
αD

v2

)
+O(m2

0) , (39a)

⟨δρ1δm1⟩ =0 +O(m2
0) , (39b)

where the functions h1 and h2 are given by

h1(u) =
1

4π2

∫
V

q̃2(2u2q̃2 + u) + q̃2x(
2q̃2 + 1

) (
q̃2(u2q̃2 + u) + q̃2x

) d2q̃ , (40a)

h2(u) =
1

4π2

∫
V

q̃2x(
2q̃2 + 1

) (
q̃2(u2q̃2 + u) + q̃2x

) d2q̃ . (40b)

Using (39), we obtain the following renormalized dynamics for m̃

∂tm̃ =D∇2m̃− v∂xρ̃−F(ρ̃, m̃)− σ
3γm̃

ρ̃α
h1

(
αD

v2

)
+O(σm̃2) , (41)

from which we deduce the expression of the renormalized mass α̂ at first order in σ

α̂ = α− σ
3γα

ρ̃v2
h1

(
αD

v2

)
. (42)

We observe that the renormalized mass α̂ has become density dependent due to the effect of
fluctuations, hence extending our one-dimensional result to dimension 2. Since the stability
analysis performed in Sec. 3 remains valid in 2D, the density-dependence of α̂(ρ̃) turns the
continuous transition predicted by the mean-field evolution (17) into a first-order, liquid-gas-
like phase separation exhibiting flocks.

However, an interesting difference between the one- and two-dimensional cases can be
noted by computing explicitly h1 in Eq. (42): the renormalization is infinite in dimension 2

due to a UV divergence. The latter can be traced back to the approximation of the microscopic
AIM by a continuous partial-differential equation at mean-field level. This approximation is
valid only for scales much larger than the correlation length and produces quantitative errors
when describing our microscopic models on short scales. Indeed, the correlators ⟨OqO−q⟩
entering the renormalization of the mass scale as q−2 when q → ∞. In dimension 2, taking
into account the measure d2q, the integral of the correlators thus behave as

∫
q−1dq, which

leads to logarithmically diverging corrections of the mass. The scales at which our mean-
field partial-differential equation fails at describing the microscopic model are precisely the
scales that dominate the integral. While this spurious divergence prevents us from predicting
quantitatively the prefactor of the mass renormalization, the dimensional analysis of Eq. (42)
nevertheless guarantees a density-dependent renormalization. It would be interesting to check
whether the difference between 1D and 2D implies different “universal” behaviours of the
renormalized mass α̂: Our computations indeed suggest that different microscopic models
leading to the same mean-field equations in 1D should have the same renormalized mass
while this form of universality would not hold in 2D.
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5. Fluctuation-Induced First Order Transition in topological AIMs

In this section, we show that the topological version of the AIM also experiences a FIFOT.
We start in Sec. 5.1 by following [46] to argue that topological alignment should generically
induce a density-dependent polar-field mass once fluctuations are taken into account. We then
consider explicitly the case of the k-nearest-neighbour alignment in Sec. 5.2, and confirm the
existence of a discontinuous transition using microscopic simulations. We finally discuss the
case of Voronoi alignment in Sec. 5.3 where we show that the onset of order indeed depends on
density and is accompanied with the non-linear traveling bands that are typical of first-order
scenarios. Sections 5.1 and 5.2 are extended accounts of arguments and results presented
in [46] whereas Sect. 5.3 is entirely new.

5.1. Generic aligning field m̄(x, [ρ,m]) and dimensional analysis

Before we turn to specific models, let us consider the case in which the aligning field m̄ is an
intensive field taking the form of an unspecified functional of ρ and m:

m̄(x) = G(x, [ρ,m]) . (43)

Note that, Gmetric(x, [ρ,m]) = m(x)/ρ(x) corresponds to the case of the metric AIM studied
so far. For simplicity, we work in 1D and consider the mean-field evolution of

∂tρ = D∂xxρ− v∂xm, (44a)

∂tm = D∂xxm− v∂xρ−F(ρ,m, m̄) +
√
2σρ η , (44b)

where m̄(x) is given by Eq. (43) and F(ρ,m, m̄) by Eq. (13). Note that, as before, m(x) in
Eq. (44b) is the sum of the orientations of ∼ ρ(x) particles so that the noise is multiplicative
and proportional to

√
ρ(x, t). The possible topological nature of m̄ has no reason to change

this scaling. Because of the fluctuations and according to Sec. 4, we expect that the mean-field
approximation for the dynamics of ρ̃ = ⟨ρ⟩ and m̃ = ⟨m⟩ must be corrected by an additional
term ∆F

∂tρ̃ = D∂xxρ̃− v∂xm̃ , (45a)

∂tm̃ = D∂xxm̃− v∂xρ̃−F(m̃, ρ̃, ˜̄m)− σ∆F . (45b)

Using scaling arguments and dimensional analysis in the renormalization procedure, we show
in App. C.3 that the generic dependency of ∆F should take the following form (to leading
order in σ)

∆F = m̃ F̄
(
ΓD

v2
,
Γ

vρ̃
, β

)
+O(m̃2) , (46)

where F̄ is a dimensionless function that depends on the specific choice of the aligning
functional G. If the aligning field is generic, there is no reason that the dependency of F̄
on its second argument vanish, and we thus expect a correction to α that depends on the
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local density ρ̃. This result suggests that flocking models should generically exhibit a phase
separation with travelling flocks near the onset of order, irrespective of whether metric or
topological alignment is involved. In the following sections, we confirm this statement and
the scaling form of (46) in the case of the alignment with the k nearest neighbors.

Before we do so, it is nevertheless interesting to ask whether one can find a case for
which the dependence on density suggested by Eq. (46) vanishes. So far, the only strategy
that we have found to achieve this is rather brutal: to disconnect the positional degrees of
freedom and the aligning dynamics. For instance, consider a fully-connected version of the
AIM for which

m̄ =

∫ L

0
m(z)dz

N
; where N =

∫ L

0

ρ(z)dz . (47)

In this case, to leading order in σ, ∆F reads (see App. C.3 for details):

∆F =
m̃

N

(
β2

2
+

β2

1− β

)
+O(m̃2) . (48)

Comparing Eq. (48) with Eq. (46), we remark that F̄ does not depend on ΓD/v2 nor on
Γ/(vρ̃) for the fully connected AIM. For this specific kind of alignment, fluctuations leads to
a density-independent correction of the linear Landau term and, consistent with the results of
Ref. [52], the mean-field transition to collective motion resists fluctuations.

5.2. Alignment with the k-nearest neighbors

In this section, we consider an AIM in which particles align with their k-nearest neighbours,
as in (3). At the field-theoretical level and in one space dimension, particles at position x thus
align with a “topological” field m̄(x, t) computed as

m̄(x) =
1

k

∫ x+y(x)

x−y(x)

m(z)dz , (49)

where the field y(x) measures the interaction range of a particle located at x. It is constructed
so that alignment occurs with the k-nearest neighbours by requiring that∫ x+y(x)

x−y(x)

ρ(z)dz = k . (50)

Note that doubling the distance between the particles does not alter the values of m̄(x), as
expected in topological models [10, 45]. For the k-nearest-neighbor alignment (49), the
homogeneous solution of (44) in the absence of noise is given by ρ = ρ0, m = m0, entailing
that y = y0 = k/(2ρ0) and m̄ = m0/ρ0. The linear term in F then reduces to 2Γ(1 − β)m0,
leading to a density-independent mean-field critical temperature βm = 1. Following the same
steps as in Sec. 2.2, we show in App. C.1 that the homogeneous disordered and ordered
solutions remain linearly stable for β < βm and β > βm respectively. The topological mean-
field theory of Eq. (44) with k-nearest alignment (49) thus predicts a continuous transition in
the absence of noise.
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We now discuss the role of fluctuations. Starting from Eq. (44), we construct the
dynamics of the average fields ρ̃ = ⟨ρ(x, t)⟩ and m̃ = ⟨m(x, t)⟩ to order σ. We stress
that Eq. (50) directly yields the field y(x, t) in terms ρ(x, t). As in the metric case, there are
thus only two independent hydrodynamic fields, ρ(x, t) and m(x, t), and the renormalization
process presented in Sec. 4 is still valid. Note that the definition of y(x) suggests that, to
leading order in σ, it varies over lengthscales comparable to those over which ρ0(x) and
m0(x) varies. The same thus holds for m̄(x) and we thus assume that δρ1 and δm1 vary on
lengthscales much smaller than the lengthscales over which ρ0(x), m0(x), m̄(x) and y(x)

vary. To first order in the noise strength σ, we then find (see App. C.2 for details):

∂tρ̃ = D∂xxρ̃− v∂xm̃ , (51a)

∂tm̃ = D∂xxm̃− v∂xδρ̃−F (m̃, ρ̃, ˜̄m)− σ∆F , (51b)

where ρ̃ = ⟨ρ⟩, m̃ = ⟨m⟩, ˜̄m = m̄(ρ̃, m̃) and where the correction ∆F due to renormalization
is given by

∆F = m̃
2

k
g

(
β,

Γk

vρ̃
,
ΓD

v2

)
+O(m̃2σ) +O(σ

3
2 ) , (52)

with g a positive function whose expression is given in Eq. (C50) of App. C.2. Importantly, g
depends explicitly on the density, and the linear term of the aligning dynamics thus depends
on the density. As discussed in Section 3, this entails the occurrence of a phase separation with
travelling flocks near the onset of order. Figure 5 shows the result of numerical simulations
of Eq. (44) with the k-nearest alignment (49). As predicted, we indeed observe the formation
of inhomogeneous propagating bands close to the onset of order.

The analysis of our topological field-theory thus predicts both a density-dependent onset
of order as well as the emergence of non-linear traveling bands. We now verify these two
predictions in microscopic simulations of the AIM using Eq. (5) with the k-nearest alignment
defined in (3). Figure 6 shows the phase diagram measured numerically in the density-
temperature plane. In this diagram each point (ρ, β−1) is colored according to its steady state:
homogeneously ordered, homogeneously disordered, or travelling flocks. In agreement with
our predictions, the onset of order occurs at noise values that depend on the mean density
ρ0. Furthermore, simulations reveal a discontinuous transition to collective motion and the
emergence of ordered travelling bands similar to the one described in Fig. 1 and Fig. 5.

5.3. Voronoi alignment

Finally, we consider the case of a topological Voronoi AIM where the aligning field m̄ is
computed for each particle as the averaged magnetization of its Voronoi neighbors (4). In this
case, the lack of a proper field-theoretical expression for m̄ prevents an explicit derivation of
the functionals G and F , as well as an analytical proof that the onset of order becomes density-
dependent due to fluctuations. On the other hand, direct simulations of the microscopic
dynamics (5)-(6) using the CGAL libray allow us to probe whether such a dependency on
the density exists. We now report the results of these simulations, while the details of their
implementation can be found in App. F.2.
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Figure 5. Snapshot of the density and magnetization profiles resulting from a numerical
integration of the stochastic PDE (44) with k-nearest alignment (49). The magnetization
(red) and the density (blue) fields show a dense polar band propagating in a disordered gas.
Parameters: D = Γ = v = 1, k = 5, ρ0 = 5, L = 100, β = 1.1, dx = 0.01, dt = 0.01,
σ = 0.4. Figure adapted from Ref. [46].

(a) (b)

(c)

Figure 6. Microscopic simulations of the AIM (5)-(6) with k-nearest neighbors alignment (3).
(a) Phase diagram in the (ρ0, β

−1) plane. The homogeneous ordered (blue) and disordered
(green) regions are separated by a coexistence phase (red). The mean-field critical temperature
is β = 1 (dashed-lined). The red lines are guide to the eyes which show how the transition
shifts as the mean density varies. (c) Snapshot of a propagating band corresponding to the
black triangle in the phase diagram. Blue and red particles correspond to positive and negative
spins. The corresponding density and magnetization fields, averaged over y and time, are
shown in panel (b). Parameters: D = 8, Ly = 400, Lx = 2000, k = 3, Γ = 0.5, v = 0.9.
Figure adapted from Ref. [46].

In Fig. 7a, we measured the global magnetization magnitude |M | = |⟨m⟩| as a function
of the inverse temperature β for different densities ρ0. We observe that the critical temperature
β∗ at which a global magnetization develops depends on the average density. Figure 7b
displays the phase diagram of the Voronoi AIM model in the density-temperature plane. Each
point in the (ρ0, β−1) plane corresponds to an equilibrated simulation colored according to its
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a. b. c.

Figure 7. Microscopic simulations of the AIM (5)-(6) with Voronoi alignment (4). a. Average
global magnetization magnitude |M | as a function of the inverse temperature β. Different
colors correspond to different values of the density ρ0 (decreasing from left to right). b.
Phase diagram of the flocking transition in the temperature (β−1, ρ0) plane. The color-coding
indicates the magnitude of the steady-state global magnetization. The solid green line is a
fit of the line separating the ordered (|M | ̸= 0) phase from the disordered (M = 0) one to
the function β∗(ρ0) = β0 + β1/ρ, (with β0 ≃ 1.095 and β1 ≃ 0.017). c. Heatmap of the
local magnetization M of a travelling band. The inset shows the corresponding snapshot with
right-moving (red circles) and left-moving (blue circles) particles. Parameters used: ρ0 = 0.2,
β = 1.18, v = 0.5, D = 5, Γ = 1; box size: Lx = Ly = 1500.

steady-state global magnetization magnitude. The green curve is a fit to the line separating the
disordered and ordered regions, with β∗(ρ0) = β0 + β1/ρ, (with β0 ≃ 1.095 and β1 ≃ 0.017),
hence confirming the density-dependence of the critical temperature.

Given the shape of the phase diagram, we expect from the linear stability analysis of
Sec. 3 that the transition is characterized by non-homogeneous travelling solutions. This is
confirmed in simulations of the microscopic dynamics performed close to the onset of order
for which a painstaking numerical effort allowed us to report the existence of stable ordered
bands. Let us note that, due to the weak density-dependence of the critical temperature on ρ,
very large system sizes are required to observed traveling bands, in accordance with Eq. (21).
As a consequence, despite the large system sizes used, we are completely unable to measure
binodal densities and properly delimit the band region. Figure 7c nevertheless displays a
snapshot of such a band made of left-moving particles.

6. Fluctuation-Induced First Order Transition in Toner–Tu models

In this final part, we discuss the case of vectorial flocking models. We begin in Sec. 6.1 by
showing that, in this case as well, a density-dependent polar-field mass generically entails
a discontinuous flocking transition. By complementing the mean-field description of a
topological version of Toner–Tu equations with noise, we then show analytically in Sec. 6.2
how a renormalized density-dependent polar-field masss emerges in this model. Finally, by
performing microscopic simulations, we confirm in Fig. 8a and Fig. 9 a density-dependent
onset of order in the Vicsek model for both k-nearest neighbors (using results of [46]) and
for Voronoi alignment (using new simulation results). Figure 8 also shows the emergence of
non-linear travelling band for the k-nearest-neighbour alignment. In the Voronoi case, the
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very weak dependency of the onset to order suggests that enormous sizes would be required
to see bands, and the latter have indeed so far resisted our numerical efforts.

6.1. Linear stability analysis of a vectorial polar active fluid

Our starting point is the celebrated Toner–Tu hydrodynamic equations describing the
evolution of density ρ(r, t) and velocity fields W(r, t) as [53]

∂tρ+∇ · W =0 . (53a)

∂tW =− λ1(W ·∇)W − λ2(∇ · W)W − λ3∇(|W|2)− αW − a4|W|2W −∇P1

− W (W ·∇P2) +DB∇(∇ · W) +DT∇2W +D2(W ·∇)2W , (53b)

where the coefficients λi, α, a4, DB , DT , D2, as well as the scalar functions P1 and
P2, depend, in general, on the local density ρ(r, t) and on the amplitude |W(r, t)| of the
velocity field. Since we are interested in the onset of flocking, we focus on a simplified
one-dimensional version of Eq. (53), where this single dimension corresponds to the main
direction of motion in the ordered phase. In that case, W becomes a scalar and Eq. (53)
simplifies into

∂tρ+ ∂xW =0 , (54a)

∂tW + λW∂xW = − αW − a4W
3 − ∂xP1 −W 2∂xP2 +D∂xxW +D2W (∂xW )2 . (54b)

In order to perform a linear stability analysis of the homogeneous profiles, we introduce a
characteristic velocity scale v such that W = vŴ . Introducing similarly the variables λ̂ = vλ,
â4 = v2a4, P̂1 = v−1P1, P̂2 = vP2 and D̂2 = v2D2, the dynamics can be rewritten as

∂tρ+ v∂xW =0 , (55a)

∂tW + λW∂xW = − αW − a4W
3 − ∂xP1 −W 2∂xP2 +D∂xxW +D2W (∂xW )2 , (55b)

where we have dropped the hat for simplicity and where ρ and W in Eq. (55) now have
the same dimension. We then consider perturbations δρ and δW around the homogeneous
solution ρ0, W0 =

√
|α|/a4. The linearized dynamics of δρ and δW in Fourier space read

∂t

(
δρq
δWq

)
=

(
0 −ivq

ξ1 − iqξ2 ξ3 − iqξ4 − ξ5q
2

)
·

(
δρq
δWq

)
, (56)

where the ξi are functions of ρ0 and W0. Their exact expressions can be directly deduced
from a Taylor expansion around ρ0 and W0 of the parameters and scalar functions appearing
in (55b). Here, we are only interested in their scaling with W0 near the transition, when
|W0| ≪ 1, where they satisfy

ξ1 =W0α
′ +O(W 2

0 ) , ξ2 = O(W0) , ξ3 = −γW 2
0 +O(W 3

0 ) , (57a)

ξ4 =O(W0) , ξ5 = O(W0) , (57b)
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with α′ and γ defined as

α′ =
∂α

∂ρ

∣∣∣∣
ρ=ρ0, |W |=0

, γ = 2a4(ρ = ρ0, |W | = 0) . (58)

From the analysis of the eigenvalues of the stability matrix in Eq. (56), we show in App. E.1
that the homogeneous solution is unstable as soon as b(q) > 0 where

b(q) =16q2v
(
ξ21v + ξ3ξ4ξ1 − ξ2ξ

2
3

)
+ 16q4vξ5 (2ξ2 ξ3 − ξ1 ξ4)− 16q6

(
ξ2 ξ

2
5 v
)
. (59)

Close to the transition, |W0| ≪ 1, and Eq. (57) allows us to rewrite b(q) as

b(q) = 16vq2
[
(W0α

′)2 +O(W 3
0 )
]
. (60)

The homogeneous solution is therefore unstable provided that the polar field mass depends on
density, i.e. α′ ̸= 0. As before, this instability is independent of the sign of α′ and holds for
any active polar fluid described by a Toner–Tu hydrodynamics.

6.2. Renormalization of a topological Toner–Tu model: first order

To make progress, we now turn to an explicit model for which the values of the coefficients
appearing in Eq. (53) are known. For this explicit model, we derive the fluctuation-induced
renormalization of the mass term and show that, similarly to our discussion in Sec 4 for the
AIM, it also exhibits a dependency on the density.

We consider the mean-field dynamics derived in Ref. [43] for the case of the Vicsek
model with Voronoi alignment:

∂tρ+∇ · W = 0 , (61a)

∂tW +
λ

ρ
(W · ∇)W = −v2

2
∇ρ+

κ

2ρ
∇W2 −

(
α +

γ

ρ2
W2

)
W +D∇2W − κ

ρ
(∇ · W)W ,

(61b)

where the parameters D, α, λ, γ, κ, and v are density-independent. Note that in Eq. (61b),
we have introduced the self-propulsion speed v, which was set equal to unity in Ref. [43] by
rescaling time and space.

As in Sec. 6.1, we consider the one-dimensional version of Eq. (61), which reads

∂tρ+ ∂xW = 0 , (62a)

∂tW +
λ

ρ
W∂xW = −v2

2
∂xρ+D∂xxW − αW − γ

ρ2
W 3 . (62b)

Introducing the variables W̄ = v−1W , λ̄ = vλ, γ̄ = v2γ and D̄ = v2D, Eqs (62) can then be
expressed as

∂tρ+ v∂xW̄ = 0 , (63a)

∂tW̄ +
λ̄

ρ
W̄∂xW̄ = −v

2
∂xρ+D∂xxW̄ − αW̄ − γ̄

ρ2
W̄ 3 , (63b)
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Dropping the bar notation for clarity and dressing the dynamics with noises, we obtain a
stochastic evolution describing an active polar fluid with Voronoi alignment as

∂tρ+ v∂xW = ∂x

(√
2σϵρ η1

)
(64a)

∂tW +
λ

ρ
W∂xW = −v

2
∇ρ+D∂xxW − αW − γ

ρ2
W 3 +

√
2σρ η2 , (64b)

where η1,2 are Gaussian noises with unit variance while σ and ϵ are constants controlling
their strengths. (We consider here the role of the conserved noise for the sake of generality.)
Equation (64) is the starting point for our renormalization procedure. Following the method
developed in Sec. 4, we show in App. E.2 that the average fields ρ̃ = ⟨ρ⟩ and W̃ = ⟨W ⟩ are
solutions, up to order σ, of the renormalized hydrodynamic equation

∂tρ̃+ v∂xW̃ = 0 (65a)

∂tW̃ +
λ̂

ρ̃
W̃ ∂xW̃ = −v

2
∇ρ̃+D∂xxW̃ − α̂W̃ − γ̂

ρ̃2
W̃ 3 , (65b)

where α̂, γ̂ and λ̂ are the renormalized coefficients due to fluctuations. In particular, we find
that the renormalized mass of the polar field is given by

α̂ = α + σ
3γ

ρ̃

2D + αϵ

4D
√

D|α|
, (66)

and is now density dependent. Based on the stability analysis of Sec. 3, we thus conclude
that Eq. (65) exhibits a discontinuous emergence of collective motion with travelling flocks at
onset.

To verify this prediction in microscopic models, we performed microscopic simulations
of the Vicsek Model with both k-nearest and Voronoi alignment according to (1). In the case
of k-nearest alignment, we observed the formation of travelling flocks at onset of order (see
Fig. 8b), thereby confirming our prediction from field theory.

In the case of Voronoi alignment, we measured the critical temperature at fixed system
size and showed that it indeed depends on the density, albeit much weakly than in the other
models considered so far (See Fig. 9). This weak dependence suggests that very large sizes
would be needed to observe travelling bands and we failed at doing so. Furthermore, our
simulations suggest that α′(ρ) > 0 in this case, contrary to the other models we observed.
The linear instability should still be present, but this difference is worth noting and would
definitely require confirmation using extensive numerical simulations.

7. Conclusion

In this article, we have shown analytically and numerically that complementing mean-field
theories of flocking models with noise generically lead to a density-dependent renormalization
of the mass of the polar field. In turn, this dependency on the density triggers a feedback
loop between the ordering dynamics and the advection of the density fields that leads to the
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θ

a. b.

Figure 8. Simulations of the Vicsek Model with k-nearest neighbors alignment in 2D (1).
At low density, the system remains disordered. Increasing the density then leads to an
onset of order accompanied by propagating bands. a. Magnitude |M | of the average total
magnetization as a function of the noise strength σ for different values of the density. The
curves show the dependency of the onset of order on the density. Parameters: Lx = 400,
Ly = 400, k = 3, v = 0.2, ∆t = 1. Errorbars correspond to the standard deviation over 48
realizations. b. Microscopic snapshots of the system showing the travelling flocks emerging
at the onset of order. Parameters: Lx = 2000, Ly = 400, σ = 0.08, k = 3, v = 0.2, ∆t = 1,
ρ0 = 0.4 (top) and ρ0 = 0.25 (bottom). Figure partially adapted from [46].

a. b.

Figure 9. Simulations of the Vicsek Model with Voronoi alignment (1). a. Magnitude |M |
of the average total magnetization as a function of the noise strength σ. Different colors
correspond to different densities ρ0. b. Phase diagram of the flocking transition in the (σ, ρ0)

plane. The color-coding indicates the magnitude of the steady-state global magnetization.
Parameters: Lx = 600, Ly = 600, v = 0.5, and ∆t = 1.

emergence of traveling patterns. This fluctuation-induced first order transition (FIFOT) is
generic and applies both to metric and topological models of collective motion.

For topological models, we confirmed our field-theoretical predictions using microscopic
simulations with k-nearest-neighbour and Voronoi alignments. Whether the ordering field is
vectorial (Vicsek-like) or discrete (Ising), we measured a density-dependent onset of order. In
all cases but the Voronoi-based Vicsek models, we could reach system sizes large enough to
observe traveling bands.

We also extended our approach to two-dimensional systems and showed that the FIFOT
mechanism still holds with an interesting twist: in 1D, our method shows that different
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microscopic models sharing the same mean-field description have the same ‘universal’
density-dependent correction of the polar-field mass. In 2D, we expect that the UV divergence
of our theory makes microscopic difference relevant.

Moreover, we explained the sensitivity of the flocking transition to finite-size effects and
detailed why the weakly first order transition could be mistaken for a continuous one. To
observe the discontinuous nature of the transition, one must indeed simulate systems larger
than a critical size which may become very large when the polar-field mass depends weakly on
the density. We derived a criterion to predict the size beyond which one may expect to see the
signature traveling bands, Eq. (21). This criterion allowed us to find the system sizes in which
bands could be observed for the AIM with Voronoi alignment (see Fig. 7). For the Vicsek
model with Voronoi alignment, the density-dependence of the polar-field mass is very weak
and we were not able to observe flocks. Whether this is just a computational limitation of the
simulations we and others performed [43, 45] or the transition remains second order is still
an open question. Indeed, while our theory shows that a density-dependent mass is created
by fluctuations, this density dependence might vanish under the Renormalisation Group flow,
hence re-establishing a second-order transition. An analogous scenario is known to happen in
the Potts model in low spatial dimensions in which strong fluctuations transform a first-order
transition at mean-field level into a second-order one [54, 55, 56]. Finding traveling bands
in the Vicsek-Voronoi model thus remains an open challenge that could benefit from using
recently developed simulation methods [57, 58].

Note that, while we have focused on the framework of flocking models in this article, our
methods to capture the impact of fluctuations can be extended to a broad range of systems,
from bifurcations in dynamical systems to phase transitions in active gels and Boltzmann
kinetic evolutions. We also emphasize that our formalism is lighter than the usual path
integral approach, as one need not compute Feynman diagrams nor dynamical actions. This
novel approach still leads to the same result as the path integral method, and the obtained
renormalized hydrodynamics allows for quantitative predictions of noise-induced phenomena.
To illustrate the usefulness of our approach, we highlight that it has been successfully applied
to the case of active particles experiencing nematic torques [59]. In this case, fluctuations
renormalize the mass of the polar field, leading to an increase of particles’ persistence and
hence facilitating the onset of the motility-induced phase separation.
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A. Fourier series

Throughout the appendices, we use Fourier series for L-periodic functions f with the
convention

f q =
1

L

∫ L

0

f(x)e−iqx , f(x) =
∑
n∈Z

f qeiqx , (A1)

where q = 2πn/L. We note that for an arbitrary stochastic function f(x) verifying
⟨f qf q′⟩ ∝ ⟨f qf−q⟩L−1δq+q′,0, ⟨f 2(x)⟩ is given in the large-system-size limit L → ∞ as

lim
L→∞

⟨f 2(x)⟩ = lim
L→∞

∑
q,q′

⟨f qf q′⟩eiqx+iq′x = lim
L→∞

∑
q

1

L
⟨f qf−q⟩ =

∫ +∞

−∞

dq

2π
⟨f qf−q⟩ . (A2)

B. The Active Ising Model with metric alignment

B.1. Linear stability analysis

In this appendix, we generically analyze the stability of the perturbations δρ and δm for the
metric AIM. We need to handle two different linearized dynamics: the one obtained from the
mean-field metric AIM (14) and the one obtained from the renormalized metric AIM (19).
As the former evolution can be obtained from the later by setting α(ρ) = cst, we will only
detail the derivation for (19). Extending the results of this appendix to the case of the mean-
field metric AIM (14) is easily performed by setting α′ = 0 in what follows. Following the
approach discussed in Sec. 2.2, we perform the analysis in 1D and adimensionalize (19) into

∂t̃ρ = ∂x̃x̃ρ− ∂x̃m (B1a)

∂t̃m = ∂x̃x̃m− ∂x̃ρ− α̃(ρ)m− γ̃
m3

ρ2
, (B1b)

where x̃ = xv/D, t̃ = v2/D, α̃(ρ) = Dα(ρ)/v2 and γ̃ = Dγ/v2. In the following, we
drop the tilde to lighten the notation. The linearized dynamics of the perturbations δm and δρ

around the homogeneous solutions m0 and ρ0 reads

∂t

(
δρq
δmq

)
=

(
−q2 −iq

−iq −
√
|α0|/γ

(
α′
0ρ0 + 2α0

)
−q2 + 2α0

)(
δρq
δmq

)
, (B2)

where q is the wave vector, α0 = α(ρ0), α′
0 = α′(ρ0), and we have used the relation

m0 = ρ0
√
|α0|/γ. The time evolution of δρ and δm in Fourier space is governed by the

eigenvalues of the stability matrix appearing in (B2). These eigenvalues read:

λ± =
− (2q2 − 2α0)±

√
∆

2
, (B3)

where the discriminant ∆ is

∆ =
(
2q2 − 2α0

)2
+ 4iq

(
iq +

√
|α0|/γ

(
α′
0ρ0 + 2α0

))
− 4q2

(
q2 − 2α0

)
. (B4)
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The stability of the homogeneous solution is determined by the sign of the real part of the
eigenvalues λ±. An unstable mode exists as soon as |2q2−2α0| < |ℜ(

√
∆)|. This is equivalent

to requiring the expression

2ℜ(
√
∆)2 − 2ℜ

(
2q2 − 2α0

)2
= −a(q) +

√
a2(q) + b(q) (B5a)

to be positive. In Eq. (B5a), we have defined the real numbers a(q) and b(q) as

a(q) =4
(
q2 − α0

)2
+ 4

(
q4 − 2α0q

2 + q2
)

(B5b)

b(q) =16q2
(
|α0|(2α0 + α′

0ρ0)
2

γ
+ 4(2α0 − 1)α2

0

)
− 64α0(5α0 − 2)q4 + 64(4α0 − 1)q6 − 64q8 .

(B5c)

Because a(q) is always positive, the instability condition that Eq. (B5a) is positive amounts to
b(q) > 0, which is the condition given in main text. Note that the density instability occurs in
the ordered phase, where we have α0 < 0. This implies that only the term of order q2 in b(q)

can change sign and become positive to trigger the instability. Finally, since we are interested
in the behavior of the system at the onset of order where |α0| ≪ 1, the necessary condition
for an instability at lowest order in |α0| reads

ρ20(α
′
0)

2 > 0 , (B6)

which is Eq. (B6) of the main text.

B.2. Fluctuation-induced renormalization of the mass

In this Appendix we detail the derivation of the renormalized mass in the metric AIM. Our
starting point is Eq. (22), that we rewrite here for convenience:

∂tρ = D∂xxρ− v∂xm, (B7a)

∂tm = D∂xxm− v∂xρ−F(ρ,m) +
√

2σρ η . (B7b)

The role of fluctuations is now discussed by constructing the dynamics of the average fields
ρ̃(x, t) = ⟨ρ(x, t)⟩ and m̃(x, t) = ⟨m(x, t)⟩ to leading order in the noise strength σ. Calling
ρ0(x, t) and m0(x, t) the solution of Eq. (B7) in the absence of noise (i.e. when σ = 0), we
introduce their deviations ∆ρ and ∆m from this mean-field solution as series in σ1/2

∆ρ = ρ− ρ0 = σ
1
2 δρ1 + σδρ2 + · · · , (B8a)

∆m = m−m0 = σ
1
2 δm1 + σδm2 + · · · . (B8b)

Note that the δρk and δmk are stochastic fields while ρ0 and m0 are deterministic.
Inserting the expansions (B8) in Eq. (B7) and equating terms of order σk/2 yields the

evolution equation for δρk and δmk. For k = 1, it yields:

∂tδρ1 = D∂xxδρ1 − v∂xδm1 (B9a)

∂tδm1 = D∂xxδm1 − v∂xδρ1 −
∂F
∂ρ

δρ1 −
∂F
∂m

δm1 +
√

2ρ0 η , (B9b)
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while for k = 2 we obtain:

∂tδρ2 =D∂xxδρ2 − v∂xδm2 (B10a)

∂tδm2 =D∂xxδm2 − v∂xδρ2 −
∂F
∂ρ

δρ2 −
∂F
∂m

δm2 −
∂2F
∂m2

δm2
1

2
− ∂2F

∂ρ2
δρ21
2

− ∂2F
∂m∂ρ

δm1δρ1

+
δρ1√
2ρ0

η . (B10b)

Note that in Eqs. (B9), we will consider that both ρ0(x, t) and m0(x, t) are constant in time
and space. Indeed, we assume that δρ1 and δm1 are fast modes varying on lengthscales and
timescales much smaller than the ones relevant for ρ0 and m0. This adiabatic approximation
allows us to compute the correlators in terms of ρ0 and m0 as parameters and to re-establish
their dependency on x and t a posteriori.

Averaging Eqs. (B9) over the noise with Itō prescription then gives

∂t⟨δρ1⟩ = D∂xxδ⟨ρ1⟩ − v∂x⟨δm1⟩ (B11a)

∂tδ⟨m1⟩ = D∂xxδ⟨m1⟩ − v∂x⟨δρ1⟩ −
∂F
∂ρ

⟨δρ1⟩ −
∂F
∂m

⟨δm1⟩ , (B11b)

while averaging Eqs. (B10) yields

∂t⟨δρ2⟩ =D∂xx⟨δρ2⟩ − v∂x⟨δm2⟩ (B12a)

∂t⟨δm2⟩ =D∂xx⟨δm2⟩ − v∂x⟨δρ2⟩ −
∂F
∂ρ

⟨δρ2⟩ −
∂F
∂m

⟨δm2⟩ −
∂2F
∂m2

⟨δm2
1⟩

2
− ∂2F

∂ρ2
⟨δρ21⟩
2

− ∂2F
∂m∂ρ

⟨δm1δρ1⟩ . (B12b)

Summing together Eq. (B11a) multiplied by σ
1
2 and Eq. (B12a) multiplied by σ gives the

evolution of ρ̃ up to order σ as

∂tρ̃ =D∂xxρ̃− v∂xm̃ , (B13)

while summing together Eq. (B11b) multiplied by σ
1
2 and Eq. (B12b) multiplied by σ yields

the evolution of m̃ up to order σ

∂tm̃ =D∂xxm̃− v∂xρ̃−F(ρ0,m0)− σ
1
2
∂F
∂ρ

⟨δρ1⟩ − σ
1
2
∂F
∂m

⟨δm1⟩ − σ
∂F
∂ρ

⟨δρ2⟩

− σ
∂F
∂m

⟨δm2⟩ − σ
∂2F
∂m2

⟨δm2
1⟩

2
− σ

∂2F
∂ρ2

⟨δρ21⟩
2

− σ
∂2F
∂m∂ρ

⟨δm1δρ1⟩ , (B14)

where the derivatives of F are evaluated at ρ0,m0. To have an evolution equation for m̃ that
depends only on m̃ and ρ̃, we finally use the fact that, to order σ, the Landau term F(ρ̃, m̃)

taken at the averaged density and magnetization can be written as:

F(ρ̃, m̃) =F(ρ0,m0) + σ
1
2
∂F
∂ρ

⟨δρ1⟩+ σ
1
2
∂F
∂m

⟨δm1⟩+ σ
∂F
∂ρ

⟨δρ2⟩+ σ
∂F
∂m

⟨δm2⟩

+
σ

2

∂2F
∂2ρ

⟨δρ1⟩2 +
σ

2

∂2F
∂2m

⟨δm1⟩2 + σ
∂2F
∂ρ∂m

⟨δρ1⟩⟨δm1⟩+O(σ
3
2 ) .

(B15)
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Using expression (B15) into (B14) simplifies the time-evolution of m̃ as

∂tm̃ =D∂xxm̃− v∂xρ̃−F(ρ̃, m̃)− σ
∂2F
∂m2

(
⟨δm2

1⟩ − ⟨δm1⟩2

2

)
− σ

∂2F
∂ρ2

(
⟨δρ21⟩ − ⟨δρ1⟩2

2

)
− σ

∂2F
∂m∂ρ

(⟨δm1δρ1⟩ − ⟨δm1⟩⟨δρ1⟩) . (B16)

The renormalized hydrodynamic equations (B13) and (B16) correspond to Eqs. (24a)
and (24b) in the main text. We detail the computation of the correlators ⟨δρ21⟩, ⟨δm2

1⟩ and
⟨δm1δρ1⟩ in the next Appendix.

B.3. Derivation of the correlators in the high temperature phase

This Appendix is devoted to the computation of the correlators ⟨δρ21⟩, ⟨δm2
1⟩ and ⟨δm1δρ1⟩

which are needed to close the renormalized evolution of the metric AIM, i.e. Eqs. (24a)
and (24b) of the main text.

First, we cast the Itō-stochastic equations (B9) for δρ1 and δm1 into Fourier space with
the Fourier convention defined in (A1). We obtain:

∂t

(
δρq1
δmq

1

)
=

(
M q

11 M q
12

M q
21 M q

22

)(
δρq1
δmq

1

)
+

(
0√

2ρ0 η
q

)
, (B17)

where ηq is the q-th Fourier mode of the Gaussian white noise with correlations
⟨ηq(t)ηq′(t′)⟩ = L−1δq+q′,0δ(t− t′) and the matrix coefficients M q

11, M
q
12, M q

21, M
q
22 are given

by

M q
11 =−Dq2 , M q

12 =− ivq , M q
21 =− iqv + 2γ

m3
0

ρ30
, M q

22 =−Dq2 − α− 3γ
m2

0

ρ20
.

(B18)

To compute the equal-time two-point correlation functions at steady state, we first use Itō
calculus on the stochastic system (B17) to get the following closed system of equations

d

dt
⟨δρq1δρ

q′

1 ⟩ =(M q
11 +M q′

11)⟨δρ
q
1δρ

q′

1 ⟩+M q
12⟨δm

q
1δρ

q′

1 ⟩+M q′

12⟨δρ
q
1δm

q′

1 ⟩ , (B19a)

d

dt
⟨δmq

1δρ
q′

1 ⟩ =(M q
22 +M q′

11)⟨δm
q
1δρ

q′

1 ⟩+M q
21⟨δρ

q
1δρ

q′

1 ⟩+M q′

12⟨δm
q
1δm

q′

1 ⟩ , (B19b)

d

dt
⟨δmq

1δm
q′

1 ⟩ =(M q
22 +M q′

22)⟨δm
q
1δm

q′

1 ⟩+M q
21⟨δρ

q
1δm

q′

1 ⟩+M q′

21⟨δm
q
1δρ

q′

1 ⟩+
2ρ0
L

δq+q′,0 .

(B19c)

Using the assumptions that the correlation functions are fast variables, we evaluate Eqs. (B19)
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at steady state to obtain:

⟨δmq
1δm

q′

1 ⟩ =ρ0

[
− 3γ (2D2q2 + αD + vDq + v2) (2D2q2 +D(α− qv) + v2)

(α + 2Dq2)2 (D2q2 + αD + v2)2
m2

0

ρ20

+
2D2q2 + αD + v2

(2Dq2 + α) (D2q2 + αD + v2)

]
δq+q′,0

L
+O

(
m3

0

)
,

(B20a)

⟨δρq1δρ
q′

1 ⟩ =
ρ0v

2

(2Dq2 + α) (D2q2 + αD + v2)

δq+q′,0

L
+O

(
m2

0

)
, (B20b)

⟨δmq
1δρ

q′

1 ⟩ =
iρ0vDq

(2Dq2 + α) (D2q2 + αD + v2)

δq+q′,0

L
+O

(
m2

0

)
. (B20c)

Note that in (B20) we discarded higher order terms in m0 since we are interested at the onset
of collective motion where m0 ≪ 1. The real-space correlators are then obtained by inverse
Fourier transform using Eq. (A2) and performing the integral over q analytically. We obtain:

⟨δm2
1⟩ =ρ0

v2
√

2α
D

+ α
√
v2 + αD

4αv2 + 2α2D
− ρ0

3γD

(
αD√

v2+αD
+

√
2v2(2v2+3αD)

(αD)3/2

)
4 (αD + 2v2)2

m2
0

ρ20
+O(m3

0)

(B21a)

⟨δρ21⟩ =ρ0
v2
(√

2α
D

− α√
v2+αD

)
2α (αD + 2v2)

+O(m2
0) , ⟨δρ1δm1⟩ = 0 +O(m2

0) , (B21b)

which correspond to Eqs. (25a)-(25b) of the main text.

B.4. Ordered phase

In this Appendix, we discuss the fluctuation-induced renormalization in the ordered (low
temperature) phase for the metric AIM (22). In the low temperature phase (α < 0), the
fluctuations δm1 and δρ1 have no mass and the computation cannot be straightforwardly
extended from the high temperature case detailed in appendices B.2 and B.3. To circumvent
this issue, we change variable for the magnetization and define the field w:

w = m−

√
|α|
γ
ρ (B22)

In term of this new field, the time-evolution (22) is rewritten as:

∂tρ = D∂xxρ− v∂xw − v

√
|α|
γ
∂xρ (B23a)

∂tw = D∂xxw + v

√
|α|
γ
∂xw − v

(
1− |α|

γ

)
∂xρ− 2|α|w − 3

√
γ|α|w

2

ρ
− γw3/ρ2 +

√
2σρ η ,

(B23b)
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where a mass term −2|α|w is indeed present in Eq. (B23b). Introducing v1 = v
√

|α|/γ,
v2 = v(1 − |α|/γ), a1 = 2|α|, a2 = 3

√
γ|α| and Fℓ(w, ρ) = a1w + a2w

2/ρ + γw3/ρ2, we
cast the above evolution into

∂tρ = D∂xxρ− v∂xw − v1∂xρ (B24a)

∂tw = D∂xxw + v1∂xw − v2∂xρ−Fℓ(w, ρ) +
√

2σρ η , (B24b)

Using the expansions ρ = ρ0 +
√
σδρ1 + .. and w = w0 +

√
σδw1 + .., we can now repeat

the computations detailed in appendix B.2 for the high temperature phase. By doing so, we
obtain the renormalized hydrodynamic for ρ̃ = ⟨ρ⟩ and w̃ = ⟨w⟩ to order σ as

∂tρ̃ =D∂xxρ̃− v∂xw̃ − v1∂xρ̃ (B25a)

∂tw̃ =D∂xxw̃ + v1∂xw̃ − v2∂xρ̃−Fl(ρ̃, w̃)− σ
∂2Fℓ

∂w2

(
⟨δw2

1⟩ − ⟨δw1⟩2

2

)
− σ

∂2Fℓ

∂ρ2

(
⟨δρ21⟩ − ⟨δρ1⟩2

2

)
− σ

∂2Fℓ

∂w∂ρ
(⟨δw1δρ1⟩ − ⟨δw1⟩⟨δρ1⟩) , (B25b)

where the derivatives of Fℓ are evaluated at ρ̃, w̃. As detailed in B.3 for the high temperature
case, we now need to compute the correlators involving δw1 and δρ1 by using their linearized
stochastic evolution. We obtain (see App. B.5 for details):

⟨δw2
1⟩ =

ρ0√
Da1

fw

(
vv2
Da1

,
v21
Da1

)
+O(w0) , (B26a)

⟨δρ21⟩ =
ρ0√
Da1

fρ

(
v2

Da1
,
vv2
Da1

,
v21
Da1

)
+O(w0) , (B26b)

⟨δρ1δw1⟩ =0 +O(w0) , (B26c)

where fw(s, u) and fρ(s, u, z) are defined as:

fw(s, u) =

∫ +∞

−∞

dq̃

2π

s (1 + 2q̃2) + (1 + 2q̃2)2 + 4uq̃2

s (1 + 2q̃2)2 + (1 + q̃2)
(
(1 + 2q̃2)2 + 4uq̃2

) (B27a)

fρ(s, u, z) =

∫ +∞

−∞

dq̃

2π

s (1 + 2q̃2)

u (1 + 2q̃2)2 + (1 + q̃2)
(
(1 + 2q̃2)2 + 4q̃2z

) . (B27b)

Inserting (B26a)-(B26b) into (B25b), we obtain:

∂tw̃ =D∂xxw̃ + v1∂xw̃ − v2∂xρ̃− a1w̃ − a2√
Da1

σfw +O(σ
3
2 ) +O(σw̃) . (B28)

Note that w̃ = −σa2vfw/(v2a
2
1) and ρ̃ = ρ0 are the homogeneous solutions of the above

renormalized evolution Eqs (B28) and (B25a). Such a solution, which is only valid up to
order σ, is consistent with the terms discarded in (B28) which are all of order σ2 at least.
Note also that, due to mass conservation, fluctuations cannot generate any correction to a
homogeneous solution for ρ̃.
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Finally, considering the definition of w given in Eq. (B22) and inserting the expression
of v1, v2, a2 and a1 in terms of |α| and γ, we find that fluctuations lower the homogeneous
magnetization in the ordered phase according to

m̃ =

√
|α|
γ
ρ0 − σ

3
√
γ

2
√
2D|α|

fw

(
v2(γ − |α|)
2D|α|γ

,
v2

2Dγ

)
+O(σ

3
2 ) , (B29)

which corresponds to Eq. (27a) in the main text. This lowering of the magnetization in the
ordered phase can be absorbed in a renormalization of |α|/γ according to m̃ =

√
|α̂|/γ̂ ρ0,

with

|α̂|
γ̂

=
|α|
γ

− σ

ρ0

3√
2D|α|

fw

(
v2(γ − |α|)
2D|α|γ

,
v2

2Dγ

)
+O(σ

3
2 ) . (B30)

Note that, consistently with our result (26c) obtained in the high temperature phase, the
fluctuation-induced correction of α/γ also scales as ρ−1

0 in the low temperature phase.

B.5. Renormalization in the low temperature phase

In this Appendix, we detail the computation of the correlators ⟨δρ21⟩, ⟨δw2
1⟩ and ⟨δρ1δw1⟩

involved in (B25a)-(B25b). Inserting the expansion ρ = ρ0+
√
σδρ1+.., w = w0+

√
σδw1+..

into (B24a)-(B24b) and identifying terms of order σ1/2 yields the time-evolution of the
stochastic fields δρ1 and δw1 as

∂tδρ1 = D∂xxδρ1 − v∂xδw1 − v1∂xδρ , (B31a)

∂tδw1 = D∂xxδw1 + v1∂xδw1 − v2∂xδρ1 −
∂Fℓ

∂ρ
δρ1 −

∂Fℓ

∂w
δw1 +

√
2ρ0 η . (B31b)

where η is a Gaussian white noise such that ⟨η(x, t)η(x′, t′) = δ(x− x′)δ(t− t′)⟩. In Fourier
space, using the Fourier convention (A1), the above system (B31) reads

∂t

(
δρq1
δwq

1

)
=

(
Bq

11 Bq
12

Bq
21 Bq

22

)(
δρq1
δwq

1

)
+

(
0√

2ρ0 η
q

)
, (B32a)

where ηq is the q-th Fourier mode of the Gaussian white noise with correlations
⟨ηq(t)ηq′(t′)⟩ = L−1δq+q′,0δ(t − t′) and the matrix coefficients Bq

11, B
q
12, B

q
21, Bq

22 are given
by

Bq
11 =−Dq2 − iv1q , Bq

12 =− ivq , (B32b)

Bq
21 =− iqv2 + a2

w2
0

ρ20
+ 2γ

w3
0

ρ30
, Bq

22 =−Dq2 + v1iq − a1 − 2a2
w0

ρ0
− 3γ

w2
0

ρ20
. (B32c)

Following the same steps as for the high-temperature case, we use Itō calculus on Eq. (B32a)
to obtain the dynamics of the correlators. Evaluating these dynamics at steady state, we obtain
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a closed system of equations for the correlators, whose solution reads:

⟨δwq
1δw

q′

1 ⟩ =⟨δwq
1δw

−q
1 ⟩δq+q′,0

L
+O (w0) , ⟨δρq1δρ

q′

1 ⟩ = ⟨δρq1δρ
−q
1 ⟩δq+q′,0

L
+O (w0)

⟨δwq
1δρ

q′

1 ⟩ =⟨δwq
1δρ

−q
1 ⟩δq+q′,0

L
+O (w0) ,

(B33a)

where ⟨δwq
1δw

−q
1 ⟩, ⟨δρq1δρ

−q
1 ⟩ and ⟨δwq

1δρ
−q
1 ⟩ are given by

⟨δρq1δρ
−q
1 ⟩ = ρ0v

2 (a1 + 2Dq2)

vv2 (a1 + 2Dq2)2 +D (a1 +Dq2)
(
(a1 + 2Dq2)2 + 4q2v21

) (B33b)

⟨δwq
1δw

−q
1 ⟩ =

ρ0

(
vv2 (a1 + 2Dq2) +D

(
(a1 + 2Dq2)

2
+ 4q2v21

))
vv2 (a1 + 2Dq2)2 +D (a1 +Dq2)

(
(a1 + 2Dq2)2 + 4q2v21

) (B33c)

⟨δwq
1δρ

−q
1 ⟩ = iDqρ0v (a1 + 2q(Dq + iv1))

vv2 (a1 + 2Dq2)2 +D (a1 +Dq2)
(
(a1 + 2Dq2)2 + 4q2v21

) . (B33d)

Because v, v1, v2, a1, a2 and γ are positive, the denominators in the above expressions remains
positive as well. This allows us to integrate over q, and, using Eq. (A2), we obtain the real-
space correlators given in Eqs. (B26).

B.6. Renormalization with conserved noise on the density field

This appendix is devoted to the study of a generalization of (17) where we consider an
additional conservative noise acting on the evolution of the density

∂tρ = D∂xxρ− v∂xm+ ∂x(
√
2σϵρ η1) , (B34a)

∂tm = D∂xxm− v∂xρ−F(ρ,m) +
√
2σρ η2 . (B34b)

In particular, we show here that the later noise does not affect the FIFOT scenario described
in 4.1: the renormalized linear mass of (B34) is also density-dependent. We first note that
the conservative noise has no impact on the perturbative method employed in 4.1: expression
(24b) for the renormalized Landau terms remains valid. However, it changes the stochastic
evolution of the fields δm1 and δρ1 in Fourier space. Using the Fourier convention defined in
(A1), the later now reads

∂t

(
δρq1
δmq

1

)
=

(
M q

11 M q
12

M q
21 M q

22

)(
δρq1
δmq

1

)
+

(
iq
√
2ϵρ0 η

q
1√

2ρ0 η
q
2

)
, (B35)

where ηq1 and ηq2 are the q-th Fourier modes of the Gaussian white noises with correlations
⟨ηqj (t)η

q′

k (t
′)⟩ = L−1δq+q′,0δ(t − t′)δj,k and the matrix coefficients M q

11, M
q
12, M q

21, M q
22 are

still given by (B18). As the evolution of δm1 and δρ1 has changed, so has the evolution of
the equal-time two-point correlators ⟨δm2

1⟩, ⟨δρ21⟩ and ⟨δm1δρ1⟩ involved in (24b). Using Itō
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calculus on the stochastic system (B35), it now reads

d⟨δρq1δρ
q′

1 ⟩
dt

=(M q
11 +M q′

11)⟨δρ
q
1δρ

q′

1 ⟩+M q
12⟨δm

q
1δρ

q′

1 ⟩+M q′

12⟨δρ
q
1δm

q′

1 ⟩ −
2ϵρ0q

2

L
δq+q′,0 = 0 ,

(B36)

d⟨δmq
1δρ

q′

1 ⟩
dt

=(M q
22 +M q′

11)⟨δm
q
1δρ

q′

1 ⟩+M q
21⟨δρ

q
1δρ

q′

1 ⟩+M q′

12⟨δm
q
1δm

q′

1 ⟩ = 0 , (B37)

d⟨δmq
1δm

q′

1 ⟩
dt

=(M q
22 +M q′

22)⟨δm
q
1δm

q′

1 ⟩+M q
21⟨δρ

q
1δm

q′

1 ⟩+M q′

21⟨δm
q
1δρ

q′

1 ⟩+
2ρ0
L

δq+q′,0 = 0 ,

(B38)

where the last equality stems from working in the steady state. Inverting the above system
yields

⟨δmq
1δm

q′

1 ⟩ =gmm(q)
δq+q′,0

L
, ⟨δρq1δρ

q′

1 ⟩ =gρρ(q)
δq+q′,0

L
, ⟨δmq

1δρ
q′

1 ⟩ =gmρ(q)
δq+q′,0

L
,

(B39)

where, to first order in m0, the functions gmm(q), gρρ(q) and gmρ(q) are given by

gmm(q) =σρ0
D (α + 2Dq2) + v2 − q2ϵv2

(α + 2Dq2) (D (α +Dq2) + v2)
+O

(
m2

0

)
, (B40)

gρρ(q) =σρ0
v2 − ϵ (α2 + 2D2q4 + 3αDq2 + q2v2)

(α + 2Dq2) (D (α +Dq2) + v2)
+O

(
m2

0

)
, (B41)

gmρ(q) =σρ0
iqv (ϵ (α +Dq2) +D)

(α + 2Dq2) (D (α +Dq2) + v2)
+O

(
m2

0

)
. (B42)

We note that gρρ(q) contains a polynomial part and a rational part in the wave-vector q. Upon
Fourier transforming back in real space using (A2), this polynomial part will yield terms
proportional to δ(x − y) in the two-point functions ⟨δρ1(x)δρ1(y)⟩. These delta peaks are
unphysical and to regularize the correlator taken at x = y we hereafter neglect the polynomial
part to consider only that

gρρ(q) =
σρ0
D

αϵv2 +Dk2ϵv2 +Dv2

(α + 2Dq2) (D (α +Dq2) + v2)
+O

(
m2

0

)
. (B43)

We further remark that we can integrate gmm(q), gρρ(q) and gmρ(q) over q only if α > 0,
which means that we have to restrict our study to the high temperature phase where such a
condition is respected. Performing the integration in such a regime, we finally obtain

⟨δρ21⟩ =
∫

dq

2π
gρρ(q) = −ρ0

v
f3

(
αD

v2

)
+

ρ0α
2ϵ

v3
f4

(
αD

v2

)
+O(m2

0) , (B44a)

⟨δm2
1⟩ =

∫
dq

2π
gmm(q) =

ρ0
v
f1

(
αD

v2

)
− ρ0α

2ϵ

v3
f2

(
αD

v2

)
+O(m2

0) (B44b)

⟨δm1δρ1⟩ =
∫

dq

2π
gmρ(q) = 0 +O(m2

0) , (B44c)
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where the functions f1, f2, f3, and f4 are given by

f1(u) =

√
2u(u+ 1) + u2(u+ 1)

2u2
√
u+ 1(u+ 2)

, f2(u) =
2u−

√
2u(u+ 1) + 2

4u2
√
u+ 1(u+ 2)

, (B45)

f3(u) =
u2 −

√
2u3(u+ 1)

2u2
√
u+ 1(u+ 2)

, f4(u) =

√
2u(u+ 1) + 2

4u2
√
u+ 1(u+ 2)

. (B46)

Inserting (B44) into (24b) then yields the following renormalized dynamics for m̃

∂tm̃ =D∂xxm̃− v∂xρ̃−F(ρ̃, m̃)− σ
3γm̃

ρ̃v

[
f1

(
αD

v2

)
+ ϵ

α2

v2
f2

(
αD

v2

)]
+O(σm̃2) .

(B47)

From (B47), we deduce the expression of the renormalized linear Landau term α̂ at first order
in σ as

α̂ = α− σ
3γ

ρ̃v

[
f1

(
αD

v2

)
+ ϵ

α2

v2
f2

(
αD

v2

)]
. (B48)

Once again, and even in the presence of conservative noise in the dynamics of ρ, we observe
that the renormalized linear mass term α̂ has become density-dependent due to the effect
of fluctuations. Therefore, according to the stability analysis performed in 3, α̂(ρ̃) will
turn the continuous transition predicted by the mean-field evolution (B34) into the standard
discontinuous phase transition with travelling flocks.

B.7. Renormalization in 2D

This appendix is devoted to the computation of the correlators ⟨δρ21⟩, ⟨δm2
1⟩ and ⟨δm1δρ1⟩

in dimension 2. As in Appendix B.3, we cast the stochastic evolution of δρ1 and δm1 into
Fourier space with the Fourier convention defined in (A1). We obtain

∂t

(
δρq

1

δmq
1

)
=

(
Mq

11 Mq
12

Mq
21 Mq

22

)(
δρq

1

δmq
1

)
+

(
0√

2ρ0 η
q

)
, (B49)

where ηq is the q-th Fourier mode of the Gaussian white noise with correlations
⟨ηq(t)ηq′

(t′)⟩ = L−1δq+q′,0δ(t − t′) and the matrix coefficients Mq
11, M

q
12, M

q
21, M

q
22 are

now given by

Mq
11 =−Dq2 , Mq

12 =− ivqx , Mq
21 =− iqxv + 2γ

m3
0

ρ30
, Mq

22 =−Dq2 − α− 3γ
m2

0

ρ20
.

(B50)

To compute the equal-time two-point correlation functions, we use Itō calculus on the
stochastic system (B49) and obtain the following closed system of equations
d

dt
⟨δρq

1δρ
q′

1 ⟩ =(Mq
11 +Mq′

11)⟨δρ
q
1δρ

q′

1 ⟩+Mq
12⟨δm

q
1δρ

q′

1 ⟩+Mq′

12⟨δρ
q
1δm

q′

1 ⟩ = 0 , (B51a)

d

dt
⟨δmq

1δρ
q′

1 ⟩ =(Mq
22 +Mq′

11)⟨δm
q
1δρ

q′

1 ⟩+Mq
21⟨δρ

q
1δρ

q′

1 ⟩+Mq′

12⟨δm
q
1δm

q′

1 ⟩ = 0 , (B51b)

d

dt
⟨δmq

1δm
q′

1 ⟩ =(Mq
22 +Mq′

22)⟨δm
q
1δm

q′

1 ⟩+Mq
21⟨δρ

q
1δm

q′

1 ⟩+Mq′

21⟨δm
q
1δρ

q′

1 ⟩+
2ρ0
L

δq+q′,0 = 0 .

(B51c)
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where the last equality stems from working in the steady state. Inverting the above system
yields

⟨δmq
1δm

q′

1 ⟩ =gmm(q)
δq+q′,0

L
, ⟨δρq

1δρ
q′

1 ⟩ =gρρ(q)
δq+q′,0

L
, ⟨δmq

1δρ
q′

1 ⟩ =gmρ(q)
δq+q′,0

L
,

(B52)

where, to first order in m0, the functions gmm(q), gρρ(q) and gmρ(q) are given by

gmm(q) =ρ0
2D2q4 + αDq2 + q2xv

2

(α + 2Dq2) (D2q4 + αDq2 + q2xv
2)

+O
(
m2

0

)
, (B53a)

gρρ(q) =ρ0
q2xv

2

(α + 2Dq2) (D2q4 + αDq2 + q2xv
2)

+O
(
m2

0

)
, (B53b)

gmρ(q) =ρ0
iDqxvq2

(α + 2Dq2) (D2q4 + αDq2 + q2xv
2)

+O
(
m2

0

)
. (B53c)

The real-space correlators are then obtained by inverse Fourier transform using Eq. (A2) and
performing the integral over q

⟨δm2
1⟩ =

ρ0α

v2
h1

(
αD

v2

)
+O(m2

0) , ⟨δρ21⟩ =
ρ0α

v2
h2

(
αD

v2

)
+O(m2

0) , (B54a)

⟨δρ1δm1⟩ =0 +O(m2
0) , (B54b)

where h1(u) and h2(u) are given by (40) and were obtained using the change of variable
q = q̃α/v.

C. The Active Ising Model with topological alignment

We recall below the definition of the mean-field evolution of the AIM for a generic aligning
field m̄ in 1D

∂tρ = D∂xxρ− v∂xm , (C1a)

∂tm = D∂xxm− v∂xρ+ 2Γρβm̄

(
1 +

β2m̄2

6

)
− 2Γm

(
1 +

β2

2
m̄2

)
. (C1b)

In the case of k-nearest neighbors alignment, we recall the expression of the aligning field m̄

m̄ =
1

k

∫ x+y(x)

x−y(x)

m(x)dx , (C2)

where y(x) is defined implicitly through k =
∫ x+y(x)

x−y(x)
ρ(x)dx.

C.1. Linear stability analysis for k-nearest alignment

In this Appendix, we study the linear stability of homogeneous solutions ρ = ρ0, m = m0,
y = y0 and m̄ = m̄0 of Eqs. (C1) with k-nearest neighbors alignment (C2). Because y(x) and
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m̄(x) are enslaved to ρ(x) and m(x) through (C2), δρ and δm are the only two independent
perturbations in the system and we further have that y0 = k/(2ρ0) and that m̄0 = m0/ρ0. We
first relate δm̄ to δρ and δm. To first order,

δm̄ =

∫ x+y0+δy

x−y0−δy
(m0 + δm(z))dz

k
− m0

ρ0
=

∫ x+y0

x−y0

δm(z)dz

k
+ 2δy

m0

k
+O(δm2) +O(δy2) .

(C3)

We then express δy as a function of δρ using the implicit equation k =
∫ x+y(x)

x−y(x)
ρ(x)dx :

δy =− 1

2ρ0

∫ x+y0

x−y0

δρ(z)dz +O(δρ2) . (C4)

Interestingly, the fluctuations of ρ impact m̄ through δy, despite the topological nature of the
alignment. To study the linear stability of (C1) in Fourier space, we express δyq and δm̄q in
terms of δρq and δmq. To this aim, we compute the Fourier transform of (C3) and (C4). We
start by determining δyq as

δyq =− y0
ρ0

sinc(qy0)δρ
q . (C5)

We then get δmq as

δm̄q =
y0
k
2 sinc(qy0)δm

q + 2
m0

k
δyq . (C6)

Reinserting (C5) in (C6) and further using k = 2y0ρ0 we obtain

δm̄q =
1

ρ0
sinc(qy0)δm

q − m0

ρ20
sinc(qy0)δρ

q . (C7)

Linearizing (C1) to first order in δm, δρ, δm̄, multiplying both sides by e−iqx, and integrating
over q yields the dynamics for the q-th Fourier modes δmq, δρq and δm̄q. Further using (C7),
we obtain the following dynamics for δmq and δρq

∂t

(
δρq

δmq

)
=

(
M q

11 M q
12

M q
21 M q

22

)(
δρq

δmq

)
, (C8)

where the matrix coefficients M q
11, M q

12, M q
21 and M q

22 are given by:

M q
11 =−Dq2 , M q

12 = −ivq (C9a)

M q
21 =

Γ

3

(
βm0

ρ0

)3

+ 2Γβ
m0

ρ0
− iqv + Γ sinc(qy0)

m0

ρ0

((
βm0

ρ0

)2

(−β + 2)− 2β

)
(C9b)

M q
22 =− 2Γ− Γ

(
βm0

ρ0

)2

+ Γ sinc(qy0)

((
βm0

ρ0

)2

(β − 2) + 2β

)
−Dq2 . (C9c)
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We are interested in the onset of the transition where m0 is small and β = 1 + O(m0). To
leading order in m0, the matrix coefficients simplify into

M q
11 =−Dq2 +O(m0) M q

12 =− iqv +O(m0) (C10)

M q
21 =− iqv +O(m0) M q

22 =2Γ (sinc(qy0)− 1)−Dq2 +O(m0) . (C11)

Within this regime, the eigenvalues of the linearized dynamic (C8) are given by

λ± =
− (2Dq2 + 2Γ (1− sinc(qy0)))±

√
∆

2
, (C12)

with the discriminant ∆ reading

∆ =
(
2Dq2 + 2Γ (1− sinc(qy0))

)2 − 4v2q2 − 4Dq2
(
Dq2 + 2Γ (1− sinc(qy0))

)
. (C13)

An instability emerges when at least one of the eigenvalues λ± has a positive real part, which
translates into

2ℜ(
√
∆)2 − 2ℜ

(
2Dq2 + 2Γ (1− sinc(qy0))

)2
> 0 . (C14)

This condition can be simplified by noticing that

2ℜ(
√
∆)2 − 2ℜ

(
2Dq2 + 2Γ (1− sinc(qy0))

)2
= −a+

√
a2 + b(q) > 0 , (C15)

where a and b reads:

a(q) =
[
2Dq2 + 2Γ(1− sinc(qy0))

]2
+ 4v2q2 + 4Dq2

[
Dq2 + 2Γ(1− sinc(qy0))

]
(C16)

b(q)

64q2
=− Γ2 (sinc(qy0)− 1)2

[
v2 + 2DΓ (1− sinc(qy0))

]
−D2q4

[
4DΓ (1− sinc(qy0)) + v2

]
− q2DΓ (1− sinc(qy0))

[
5DΓ (1− sinc(qy0)) + 2v2

]
−D4q6 (C17)

We remark that a(q) is a positive term and thus that the stability is determined by the sign of
b(q). All the terms in its expression (C17) are negative; the homogeneous ordered solution is
thus always stable at onset. The mean-field theory (C1) with k-nearest neighbors alignment
thus predicts a continuous transition to collective motion without phase separation.

C.2. Renormalization for k-nearest alignment

In this appendix, we compute the renormalization of the linear mass term due to the addition of
noise term in (44). To remain as general as possible, we first compute this renormalization for
a generic unconstrained m̄, which we take to be a functional of ρ and m: m̄ = G(x, {ρ,m}).
At the end of this appendix, we apply our results for the specific case of k-nearest neighbors
alignment where m̄ is defined by (C2) and obtain expression (52) of main text. We first recall
the stochastic evolution of the fields

∂tρ = D∇2ρ− v∇m , ∂tm = D∇2m− v∇ρ−F(m̄,m, ρ) +
√

2σρ η , (C18)
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where F(m̄,m, ρ) is given by (13). Following section 4.1, we perform a perturbative
expansion of the fields m and ρ as

ρ =ρ0 +
√
σδρ1 + σδρ2 + ..+ , m = m0 +

√
σδm1 + σδm2 + ..+ (C19)

where ρ0 and m0 are solutions of (C18) with σ = 0

∂tρ0 = D∇2ρ0 − v∇m0 , (C20)

∂tm0 =D∇2m0 − v∇ρ0 −Ftopo(m̄0,m0, ρ0) . (C21)

Noting that m̄ is enslaved to ρ and m through m̄ = G(x, {ρ,m}), it can be expanded in powers
of σ1/2 as

m̄ =m̄0 +
√
σ

[∫
δm̄(x)

δm(z)
δm1(z)dz +

∫
δm̄(x)

δρ(z)
δρ1(z)dz

]
(C22)

+ σ

[ ∫ (
1

2

δ2m̄(x)

δm(s)δm(z)
δm1(s)δm1(z) +

1

2

δ2m̄(x)

δρ(s)δρ(z)
δρ1(s)δρ1(z)

)
dsdz

+

∫
δ2m̄(x)

δρ(s)δm(z)
δρ1(s)δm1(z)dsdz +

∫
δm̄(x)

δm(z)
δm2(z)dz +

∫
δm̄(x)

δρ(z)
δρ2(z)dz

]
+ ..+ .

Inserting (C19) and (C22) into (C18) and projecting on σn/2 gives the evolution equation for
δρn and δmn. For n = 1, it yields

∂tδρ1 =D∇2δρ1 − v∇δm1 (C23a)

∂tδm1 =D∇2δm1 − v∇δρ1 −
∂F
∂m

δm1 −
∂F
∂ρ

δρ1 (C23b)

− ∂F
∂m̄

[∫
δm̄(x)

δm(z)
δm1(z)dz +

∫
δm̄(x)

δρ(z)
δρ1(z)dz

]
+
√
2ρ0 η .

Noting that ∂ρρF = ∂mmF = ∂mρF = 0, we obtain for n = 2

∂tδρ2 = D∇2δρ2 − v∇δm2 (C24)

∂tδm2 = D∇2δm2 − v∇δρ2 −
∂F
∂m

δm2 −
∂F
∂ρ

δρ2 −
∂F
∂m̄

δm̄2

− 1

2

∂2Ftopo

∂2m̄

[∫
δm̄(x)

δm(z)
δm1(z)dz +

∫
δm̄(x)

δρ(z)
δρ1(z)dz

]2
− ∂2Ftopo

∂m̄∂m
δm1

[∫
δm̄(x)

δm(z)
δm1(z)dz +

∫
δm̄(x)

δρ(z)
δρ1(z)dz

]
− ∂2Ftopo

∂m̄∂ρ
δρ1

[∫
δm̄(x)

δm(z)
δm1(z)dz +

∫
δm̄(x)

δρ(z)
δρ1(z)dz

]
− ∂Ftopo

∂m̄

[∫
δm̄(x)

δm(z)
δm2(z)dz +

∫
δm̄(x)

δρ(z)
δρ2(z)dz

]
− ∂Ftopo

∂m̄

∫ (
1

2

δ2m̄(x)

δm(s)δm(z)
δm1(s)δm1(z) +

1

2

δ2m̄(x)

δρ(s)δρ(z)
δρ1(s)δρ1(z)

)
dsdz

− ∂Ftopo

∂m̄

∫
δ2m̄(x)

δρ(s)δm(z)
δρ1(s)δm1(z)dsdz +

δρ1√
2ρ0

η . (C25)
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Summing together (C20), (C23a) multiplied by
√
σ, and (C24) multiplied by σ gives the

stochastic evolution of ρ up to order σ. Averaging the result over the noise using Itō
prescription, we obtain the time evolution of ρ̃ = ⟨ρ⟩ to order σ as

∂tρ̃ = D∇2ρ̃− v∇m̃ . (C26)

Likewise, summing (C21), (C23b) multiplied by
√
σ, and (C25) multiplied by σ gives the

stochastic evolution of m to order σ. Averaging the result over the noise using Itō prescription,
we obtain the time evolution of m̃ = ⟨m⟩ to order σ as

∂tm̃ = D∇2m̃− v∇δρ̃−F(m̃, ρ̃, ˜̄m)− σ∆F . (C27)

In (C27), ˜̄m is the topological field constructed with ρ̃ and m̃, ie ˜̄m = G(x, {m̃, ρ̃}), and ∆F
is given by

∆F =
1

2

∂2F
∂2m̄2

C1 +
∂2F

∂m̄∂m
C2 +

∂2F
∂m̄∂ρ

C3 +
∂F
∂m̄

C4 , (C28)

where the Ci’s are correlators given by

C1 =

∫
δm̄(x)

δm(s)

δm̄(x)

δm(z)

[
⟨δm1(s)δm1(z)⟩ − ⟨δm1(s)⟩⟨δm1(z)⟩

]
dsdz

+

∫
δm̄(x)

δρ(s)

δm̄(x)

δρ(z)

[
⟨δρ1(s)δρ1(z)⟩ − ⟨δρ1(s)⟩⟨δρ1(z)⟩

]
dsdz

+ 2

∫
δm̄(x)

δρ(s)

δm̄(x)

δm(z)

[
⟨δρ1(s)δm1(z)⟩ − ⟨δρ1(s)⟩⟨δm1(z)⟩

]
dsdz (C29a)

C2 =

∫
δm̄(x)

δm(z)

[
⟨δm1(z)δm1(x)⟩ − ⟨δm1(z)⟩⟨δm1(x)⟩

]
dz

+

∫
δm̄(x)

δρ(z)

[
⟨δρ1(z)δm1(x)⟩ − ⟨δρ1(z)⟩⟨δm1(x)⟩

]
dz (C29b)

C3 =

∫
δm̄(x)

δm(z)

[
⟨δm1(z)δρ1(x)⟩ − ⟨δm1(z)⟩⟨δm1(x)⟩

]
dz

+

∫
δm̄(x)

δρ(z)

[
⟨δρ1(z)δρ1(x)⟩ − ⟨δρ1(z)⟩⟨δρ1(x)⟩

]
dz (C29c)

C4 =

∫
1

2

δ2m̄(x)

δm(s)δm(z)

[
⟨δm1(s)δm1(z)⟩ − ⟨δm1(s)⟩⟨δm1(z)⟩

]
dsdz

+

∫
1

2

δ2m̄(x)

δρ(s)δρ(z)

[
⟨δρ1(s)δρ1(z)⟩ − ⟨δρ1(s)⟩⟨δρ1(z)⟩

]
dsdz

+

∫
δ2m̄(x)

δρ(s)δm(z)

[
⟨δρ1(s)δm1(z)⟩ − ⟨δρ1(s)⟩⟨δm1(z)⟩

]
dsdz (C29d)

To close (C29), we need to derive the correlators involving δρ1 and δm1 by using their
stochastic evolution (C23). We readily find that ⟨δm1⟩ = ⟨δρ1⟩ = 0. We now use the
assumption that ρ0, m0 and m̄0 = G(x, {ρ0,m0}) can be considered homogeneous in the
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dynamics of δρ1 and δm1. Under such an assumption, (C23) becomes a linear system and its
dynamic in Fourier space reads

∂t

(
δρq1
δmq

1

)
=

(
Aq

11 Aq
12

Aq
21 Aq

22

)(
δρq1
δmq

1

)
+

(
0√

2ρ0 η
q

)
, (C30)

where ηq is the q-th Fourier mode of the Gaussian white noise, with correlations
⟨ηq(t)ηq′(t′)⟩ = L−1δq+q′,0δ(t − t′). To pursue our derivation, we won’t need the exact
expression of the Aq

ij’s, so we just remark that they generically depend on the homogeneous
fields ρ0, m0, m̄0 as well as on the Fourier transform of the functional derivatives δm̄(x)/δρ(y)

and δm̄(x)/δm(y). The steady-state correlators of (C30) are obtained by using Itō calculus.
They satisfy

0 =(Aq
11 + Aq′

11)⟨δρ
q
1δρ

q′

1 ⟩+ Aq
12⟨δm

q
1δρ

q′

1 ⟩+ Aq′

12⟨δρ
q
1δm

q′

1 ⟩ (C31a)

0 =(Aq
22 + Aq′

11)⟨δm
q
1δρ

q′

1 ⟩+ Aq
21⟨δρ

q
1δρ

q′

1 ⟩+ Aq′

12⟨δm
q
1δm

q′

1 ⟩ (C31b)

0 =(Aq
22 + Aq′

22)⟨δm
q
1δm

q′

1 ⟩+ Aq
21⟨δρ

q
1δm

q′

1 ⟩+ Aq′

21⟨δm
q
1δρ

q′

1 ⟩+
2ρ0
L

δq+q′,0 , (C31c)

which can be solved as

⟨δmq
1δm

q′

1 ⟩ =⟨δmq
1δm

−q
1 ⟩δq+q′,0

L
(C32a)

⟨δρq1δρ
q′

1 ⟩ =⟨δρq1δρ
−q
1 ⟩δq+q′,0

L
(C32b)

⟨δmq
1δρ

q′

1 ⟩ =⟨δmq
1δρ

−q
1 ⟩δq+q′,0

L
, (C32c)

where ⟨δmq
1δm

−q
1 ⟩, ⟨δρq1δρ

−q
1 ⟩ and ⟨δmq

1δρ
−q
1 ⟩ are functions depending on the Aq

ij whose
explicit expression will not be needed. Using our convention (A1), the Fourier development
of δm1 and δρ1 reads

δm1 =
∑
q

δmq
1e

iqx δρ1 =
∑
q

δρq1e
iqx . (C33)

Injecting this development (C33) into (C29), and using the scalings (C32) allow us to compute
the expression of the Ci’s. For C1, we obtain

C1 =
1

L

∑
q

m̄q
mm̄

−q
m ⟨δmq

1δm
−q
1 ⟩+ m̄q

ρm̄
−q
ρ ⟨δρq1δρ

−q
1 ⟩+ m̄q

mm̄
−q
ρ ⟨δmq

1δρ
−q
1 ⟩ , (C34)

where m̄q
ρ and m̄q

m are the Fourier transforms of the functional derivatives of m̄ with respect
to ρ and m respectively,

m̄q
ρ =

∫ L

0

e−iqz δm̄

δρ
(z) dz, m̄q

m =

∫ L

0

e−iqz δm̄

δm
(z) dz . (C35)
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For C2 and C3, we get

C2 =
1

L

∑
q

m̄q
m⟨δm

q
1δm

−q
1 ⟩+ m̄−q

ρ ⟨δmq
1δρ

−q
1 ⟩ (C36)

C3 =
1

L

∑
q

m̄q
ρ⟨δρ

q
1δρ

−q
1 ⟩+ m̄q

m⟨δm
q
1δρ

−q
1 ⟩ . (C37)

Finally, C4 reads

C4 =
1

2L

∑
q

m̄ q,−q
m,m ⟨δmq

1δm
−q
1 ⟩+ m̄ q,−q

ρ,ρ ⟨δρq1δρ
−q
1 ⟩+ 2m̄ q,−q

m,ρ ⟨δmq
1δρ

−q
1 ⟩ , (C38)

where m̄ q,q′
m,m, m̄ q,q′

ρ,ρ and m̄ q,q′
m,ρ are the Fourier transform of the second functional derivatives

of m̄ with respect to ρ and m

m̄ q,q′

m,m =

∫ L

0

∫ L

0

e−iqs−iq′z δ2m̄

δmδm
(s, z) dsdz , m̄ q,q′

ρ,ρ =

∫ L

0

∫ L

0

e−iqs−iq′z δ
2m̄

δρδρ
(s, z) dsdz

m̄ q,q′

m,ρ =

∫ L

0

∫ L

0

e−iqs−iq′z δ2m̄

δmδρ
(s, z) dsdz . (C39)

The last step is to take the large system size limit L → ∞ in (C34)-(C36)-(C37)-(C38) to
obtain the Ci’s as integrals over Fourier modes q

C1 =

∫
dq

2π
|m̄q

m|2⟨δm
q
1δm

−q
1 ⟩+ |m̄q

ρ|2⟨δρ
q
1δρ

−q
1 ⟩+ m̄q

mm̄
−q
ρ ⟨δmq

1δρ
−q
1 ⟩ (C40a)

C2 =

∫
dq

2π
m̄q

m⟨δm
q
1δm

−q
1 ⟩+ m̄−q

ρ ⟨δmq
1δρ

−q
1 ⟩ (C40b)

C3 =

∫
dq

2π
m̄q

ρ⟨δρ
q
1δρ

−q
1 ⟩+ m̄q

m⟨δm
q
1δρ

−q
1 ⟩ (C40c)

C4 =

∫
dq

4π
m̄ q,−q

m,m ⟨δmq
1δm

−q
1 ⟩+ m̄ q,−q

ρ,ρ ⟨δρq1δρ
−q
1 ⟩+ 2m̄ q,−q

m,ρ ⟨δmq
1δρ

−q
1 ⟩ . (C40d)

So far, the correction ∆F in (C28) together with the expression of the Ci’s in (C40) is valid for
any aligning field m̄ = G(x, {ρ,m}) where G is a functional. We now apply this result for the
specific case of k-nearest neighbors alignment for which m̄ given by (C2). For homogeneous
ρ0 and m0, we can compute the functional derivatives of m̄ =

∫ x+y

x−y
m(z)dz/k as

δm̄(x)

δm(z)
=
Θ(x+ y0 − z)Θ(z − x+ y0)

2y0ρ0
,

δ2m̄(x)

δm(z)δm(s)
= 0 , (C41a)

δm̄(x)

δρ(z)
=− m0Θ(x+ y0 − z)Θ(z − x+ y0)

2y0ρ20
,

δ2m̄(x)

δρ(z)δρ(s)
= 0 , (C41b)

δ2m̄(x)

δρ(z)δm(s)
=− Θ(x+ y0 − z)Θ(z − x+ y0)

4y0ρ20

[
δ(s− x− y0) + δ(s− x+ y0)

]
, (C41c)



Fluctuation-Induced First Order Transition to Collective Motion 45

where Θ(u) is the Heaviside function which is equal to 0 if u < 0 or equal to 1 if u > 0.
Going into Fourier space, we obtain

m̄q
m = −sinc(qy0)

ρ0
, m̄q

ρ =
m0

ρ0
sinc(qy0) , (C42a)

m̄ q,q′

ρ,ρ = m̄ q,q′

m,m = 0 , m̄ q,q′

ρ,m =
sinc(qy0)

ρ0
cos(q′y0) . (C42b)

To compute the Ci’s of (C29), we still need the expression of the correlators of the fields δρ1
and δm1. For the specific case of k-nearest neighbors alignment (C2) at hand, the matrix
coefficients Aq

ij of the linearized dynamics (C30) are equal to the M q
ij defined in (C9) and we

get

∂t

(
δρq1
δmq

1

)
=

(
M q

11 M q
12

M q
21 M q

22

)(
δρq1
δmq

1

)
+

(
0√

2ρ0 η
q

)
. (C43)

Using the system (C31) with Aq
ij = M q

ij , we obtain the expressions of the steady-state
correlators in Fourier space to first order in m0

⟨δmq
1δm

−q
1 ⟩ =ρ0

2DΓ− 2DΓβ sinc(qy0) + 2D2q2 + v2

2(Γ− Γβ sinc(qy0) +Dq2) (2DΓ− 2DΓβ sinc(qy0) +D2q2 + v2)
+O

(
m2

0

)
(C44a)

⟨δρq1δρ
−q
1 ⟩ = ρ0v

2

2(Γ− Γβ sinc(qy0) +Dq2) (2DΓ− 2DΓβ sinc(qy0) +D2q2 + v2)
+O

(
m2

0

)
(C44b)

⟨δmq
1δρ

−q
1 ⟩ = iqDvρ0

2(Γ− Γβ sinc(qy0) +Dq2) (2DΓ− 2DΓβ sinc(qy0) +D2q2 + v2)

+
βv2Γ (1− sinc (qy0))m0

2 (Γ− Γβ sinc (qy0) +Dq2) 2 (2DΓ− 2DΓβ sinc (qy0) +D2q2 + v2)
+O

(
m2

0

)
.

(C44c)

We now have all the ingredients needed to compute ∆F in (C28). First, we have to inject
the correlators (C44) and the functional derivatives (C42) into the expressions of the Ci’s in
(C29). Once we have the Ci’s, we just plug them back into the expression (C28) for ∆F . A
lengthy but straightforward computation then gives

∆F =
m0

y0ρ0

[
2β(c1 − c4) + β2(1− β)c2 + 2β2c3

]
+O(m2

0) . (C45)
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Where c1, c2, c3, and c4 are given by

c1 =

∫
dq̃

2π

v2 sinc(q̃)

2
(
1− β sinc(q̃) + D

Γy20
q̃2
)(

2DΓ− 2DΓβ sinc(q̃) +D2 q̃2

y20
+ v2

) (C46a)

c2 =

∫
dq̃

2π

sinc2(q̃)
[
2DΓ− 2DΓβ sinc(q̃) + 2D2 q̃2

y20
+ v2

]
2
(
1− β sinc(q̃) + D

Γy20
q̃2
)(

2DΓ− 2DΓβ sinc(q̃) +D2 q̃2

y20
+ v2

) (C46b)

c3 =

∫
dq̃

2π

sinc(q̃)
[
2DΓ− 2DΓβ sinc(q̃) + 2D2 q̃2

y20
+ v2

]
2
(
1− β sinc(q̃) + D

Γy20
q̃2
)(

2DΓ− 2DΓβ sinc(q̃) +D2 q̃2

y20
+ v2

) (C46c)

c4 =

∫
dq̃

2π

βv2 (Γ− Γ sinc (q̃)) sinc(q̃) (1− cos(q̃))

2
(
1− β sinc (q̃) + D

Γy20
q̃2
)2 (

2DΓ− 2DΓβ sinc (q̃) +D2 q̃2

y20
+ v2

) . (C46d)

Note that all the ci’s are dimensionless and only depends on three independent parameters: β,
ΓD/v2, and Γk/(vρ0). Consequently, they all assume the scaling form

ci = c̄i

(
β, Γk

vρ0
, ΓD

v2

)
. (C47)

For example, we deduce from (C46a) the expression for c̄1

c̄1(µ, ν, ω) =

∫
du

2π

sinc(u)(
1− µ sinc(u) + 4u2 ω

2

ν2

)(
1 + 2ω − 2ωµ sinc(u) + 4u2 ω

2

ν2

) . (C48)

Using the scaling forms of (C47) in (C45), ∆F can be cast into

∆F =
2m0

k
g

(
β,

Γk

vρ0
,
ΓD

v2

)
+O(m2

0) . (C49)

where g is given by

g

(
β,

Γk

vρ0
,
ΓD

v2

)
= 2β(c̄1 − c̄4) + β2(1− β)c̄2 + 2β2c̄3 . (C50)

Note that the convergence of the integrals c1, c2, c3 and c4 is ensured in the high temperature
phase when β < 1.

Importantly, the dependence of g on ρ0 cannot be eliminated, so that the renormalization
of the linear mass indeed leads to a density-dependent onset of order. Using the fact that
β < 1, c1 > c4, and that c1, c2, c3 are positive, we deduce that g is a density-dependent positive
function in the high temperature phase. Consequently, the incorporation of microscopic noise
should lower the critical temperature.

C.3. Extension to generic alignment

This appendix is devoted to the computation of ∆F in (45b) for a generic functional alignment
m̄ as in (43). To limit repetitions, this appendix borrows many aspects of the methodology
presented in appendix C.2, whose prior reading is thus recommended.
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As shown in (C28) of appendix C.2, ∆F crucially depends on the functional derivatives
of m̄ with respect to ρ and m through the Ci’s whose expressions, given in (C29), hold for
any field m̄. Given δm̄/δρ and δm̄/δm, we can derive the matrix coefficients Aq

ij of (C30),
which in turn yields the correlators ⟨δρq1δρ

−q
1 ⟩, ⟨δρq1δm

−q
1 ⟩ and ⟨δmq

1δm
−q
1 ⟩ in (C32). These

correlators, together with the second functional derivatives of m̄, allow us to compute the Ci’s
through the use of (C40). Thus, if the functional derivatives of m̄ are constrained to assume
some scaling law, such a scaling will also be reflected in ∆F .

The first and second functional derivatives of m̄ at ρ0, m0 are defined as

m̄(x) =G(x, {ρ0,m0}) +
∫ L

0

[
δm̄(x)

δρ(z)
δρ(z) +

δm̄(x)

δm(z)
δm(z)

]
dz

+

∫ L

0

∫ L

0

1

2

[
δ2m̄(x)

δρ(s)δρ(z)
δρ(s)δρ(z) +

δ2m̄(x)

δm(s)δm(z)
δm(s)δm(z)

]
dsdz

+

∫ L

0

∫ L

0

δ2m̄(x)

δρ(s)δm(z)
δρ(s)δm(z)dsdz + o(δρ2, δm2, δρδm) . (C51)

Because m̄ is dimensionless, we read on the above equation that all its functional derivatives
are dimensionless as well. It entails that, in Fourier space, the first order functional derivatives
of m̄ scale as lengths [L] while the second order ones scale as lengths squared [L2]:

m̄q
ρ =

∫ L

0

e−iqz δm̄

δρ
(z) dz ∝ [L], m̄q

m =

∫ L

0

e−iqz δm̄

δm
(z) dz ∝ [L] (C52a)

m̄ q,q′

m,m =

∫ L

0

∫ L

0

e−iqs−iq′z δ2m̄

δmδm
(s, z) dsdz ∝ [L]2 (C52b)

m̄ q,q′

ρ,ρ =

∫ L

0

∫ L

0

e−iqs−iq′z δ
2m̄

δρδρ
(s, z) dsdz ∝ [L]2 (C52c)

m̄ q,q′

m,ρ =

∫ L

0

∫ L

0

e−iqs−iq′z δ2m̄

δmδρ
(s, z) dsdz ∝ [L]2 . (C52d)

We expect m̄q
ρ, m̄q

m, m̄ q,−q
ρ,ρ , m̄ q,−q

m,m , m̄ q,−q
m,ρ to depend on ρ0, m0 and on the wavevector q.

As in the previous appendices, we suppose that ρ0, m0, and m̄0 = G(x, {m0, ρ0}) remain
homogeneous in space throughout the derivation. As m̄ is dimensionless, m̄0 will depend on
the ratio m0/ρ0 by dimensional analysis. Taking into account all these dependences, m̄q

ρ, m̄q
m,

m̄ q,−q
ρ,ρ , m̄ q,−q

m,m , m̄ q,−q
m,ρ , and m̄0 will have the following scaling forms

m̄q
ρ =

1

ρ0
f̄ρ

(
m0

ρ0
,
q

ρ0
, . . .

)
m̄q

m =
1

ρ0
f̄m

(
m0

ρ0
,
q

ρ0
, . . .

)
m̄ q,−q

ρ,ρ =
1

ρ20
f̄ρρ

(
m0

ρ0
,
q

ρ0
, . . .

)
m̄ q,−q

m,m =
1

ρ20
f̄mm

(
m0

ρ0
,
q

ρ0
, . . .

)
m̄ q,−q

m,ρ =
1

ρ20
f̄mρ

(
m0

ρ0
,
q

ρ0
, . . .

)
m̄0 =f̄

(
m0

ρ0
, . . .

)
, (C53)

where the dots refer to other dimensionless parameters entering in the definition of m̄ (e.g.,
the number k of nearest neighbours) and are omitted for clarity from now on. Using (C53),
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the Aq
ij involved in the linearized hydrodynamics (C30) for δρ1 and δm1 are generically given

by

Aq
11 =−Dq2 , Aq

12 = −ivq (C54a)

Aq
21 =− iqv + 2Γ

[
β

(
1 +

β2

2
f̄
(

m0

ρ0

))
− m0

ρ0
β2f̄

(
m0

ρ0

)]
f̄ρ

(
m0

ρ0
, q
ρ0

)
+ 2Γβf̄

(
m0

ρ0

)[
1 +

β2

6
f̄
(

m0

ρ0

)2]
(C54b)

Aq
22 =−Dq2 + 2Γ

[
β

(
1 +

β2

2
f̄
(

m0

ρ0

))
− m0

ρ0
β2f̄

(
m0

ρ0

)]
f̄m

(
m0

ρ0
, q
ρ0

)
− 2Γ

(
1 +

β2

2
f̄
(

m0

ρ0

)2)
(C54c)

From (C54), we observe that the Aq
ij’s all follow the generic scaling form

Aq
ij = Γ ḡij

(
ΓD

v2
,
Γ

vρ0
,
q

ρ0
,
m0

ρ0
, β

)
(C55)

Because the system (C31) only involves the Aq
ij’s and ρ0 as coefficients, its solution will

assume a scaling form similar to (C55): a prefactor depending on ρ0 and Γ multiplied by a
function depending on the dimensionless variables entering in ḡij . Noting that ⟨δmq

1δm
−q
1 ⟩,

⟨δρq1δρ
−q
1 ⟩ and ⟨δmq

1δρ
−q
1 ⟩ in (C32) scale as [T ]/[L], this prefactor must be ρ0/Γ and we finally

obtain

⟨δρq1δρ
−q
1 ⟩ =ρ0

Γ
ḡ1

(
ΓD

v2
,
Γ

vρ0
,
q

ρ0
,
m0

ρ0
, β

)
, ⟨δmq

1δm
−q
1 ⟩ =ρ0

Γ
ḡ2

(
ΓD

v2
,
Γ

vρ0
,
q

ρ0
,
m0

ρ0
, β

)
(C56a)

⟨δmq
1δρ

−q
1 ⟩ =ρ0

Γ
ḡ3

(
ΓD

v2
,
Γ

vρ0
,
q

ρ0
,
m0

ρ0
, β

)
. (C56b)

Injecting (C56) together with (C53) into (C40) yields the Ci’s as

C1 =

∫
dq

2π

1

ρ0Γ
h̄1

(
ΓD

v2
,
Γ

vρ0
,
q

ρ0
,
m0

ρ0
, β

)
C2 =

∫
dq

2π

1

Γ
h̄2

(
ΓD

v2
,
Γ

vρ0
,
q

ρ0
,
m0

ρ0
, β

)
(C57a)

C3 =

∫
dq

2π

1

Γ
h̄3

(
ΓD

v2
,
Γ

vρ0
,
q

ρ0
,
m0

ρ0
, β

)
C4 =

∫
dq

2π

1

ρ0Γ
h̄4

(
ΓD

v2
,
Γ

vρ0
,
q

ρ0
,
m0

ρ0
, β

)
,

(C57b)

where the h̄i’s are given by

h̄1 =|f̄m|2 ḡ2 + |f̄ρ|2 ḡ1 + f̄mf̄
⋆
ρ ḡ3 , h̄2 =f̄m ḡ2 + f̄ ⋆

ρ ḡ3 , (C58)

h̄3 =f̄ρ ḡ1 + f̄m ḡ3 , h̄4 =f̄mm ḡ2 + f̄ρρ ḡ1 + f̄mρ ḡ3 . (C59)
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Making the integrals dimensionless in (C57) by changing variable to q̃ = q/ρ0, we obtain the
final scaling form of the Ci’s as

C1 =
1

Γ
H̄1

(
ΓD

v2
,
Γ

vρ0
,
m0

ρ0
, β

)
, C2 =

ρ0
Γ
H̄2

(
ΓD

v2
,
Γ

vρ0
,
m0

ρ0
, β

)
, (C60a)

C3 =
ρ0
Γ
H̄3

(
ΓD

v2
,
Γ

vρ0
,
m0

ρ0
, β

)
, C4 =

1

Γ
H̄4

(
ΓD

v2
,
Γ

vρ0
,
m0

ρ0
, β

)
. (C60b)

Finally plugging the above scalings into the expression of ∆F (C28), we obtain

∆F =
(
β2m0 − β3ρ0m̄0

)
H̄1 + 2β2m̄0ρ0H̄2 −

(
2β + β3m̄2

0

)
ρ0H̄3 +

(
2β2m̄0m0 − β3m̄2

0ρ0 − 2βρ0
)
H̄4 ,

which can be cast into the following scaling form

∆F = ρ0F̄1

(
ΓD

v2
,
Γ

vρ0
,
m0

ρ0
, β

)
+m0F̄2

(
ΓD

v2
,
Γ

vρ0
,
m0

ρ0
, β

)
. (C61)

As we are interested in the renormalization of the linear Landau term, we can taylor expand
∆F up to order m0

∆F =ρ0F̄1

(
ΓD

v2
,
Γ

vρ0
, 0, β

)
+m0 F̄ (0,0,1,0)

1

(
ΓD

v2
,
Γ

vρ0
, 0, β

)
+m0 F̄2

(
ΓD

v2
,
Γ

vρ0
, 0, β

)
+O(m2

0) ,

(C62)

The first term on the right hand side of (C62) is unphysical as it breaks the parity m0 → −m0

in the Landau potential. Its presence inconsistently implies that a nonzero magnetization
would subsist even in the very high temperature regime: we thus set this term to zero and
obtain the final scaling form of ∆F as

∆F = m0 F̄
(
ΓD

v2
,
Γ

vρ0
, β

)
+O(m2

0) , (C63)

where F̄(u, v, w) = F̄ (0,0,1,0)
1 (u, v, 0, w)+ F̄2(u, v, 0, w). Without changing the zero-th order

in the noise strength σ, we can replace m0 and ρ0 by m̃ = ⟨m⟩ and ρ̃ = ⟨ρ⟩ in (C63). This
substitution gives back (46) of main text:

∆F = m̃ F̄
(
ΓD

v2
,
Γ

vρ̃
, β

)
+O(m̃2) , (C64)

D. Renormalization for fully connected alignment

This appendix is devoted to the computation of ∆F in (45b) for a fully connected AIM. It is
not self-contained and as such we advise a previous reading of appendix C.2 and C.3. We first
recall the definition (47) of the alignment m̄ for the fully connected AIM in 1D

m̄ =

∫ L

0
m(z)dz

N
; where N =

∫ L

0

ρ(z)dz . (D1)
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For this specific choice of m̄, the following simplifications occur in the Fourier transforms of
the functional derivatives defined in (C52)

m̄0 =
m0

ρ0
, m̄q

m =
1

ρ0
δq,0 , m̄q

ρ = m̄ q,q′

ρ,ρ = m̄ q,q′

m,m = m̄ q,q′

m,m = 0 . (D2)

Using the discrete expressions for the Ci’s in (C34), (C36), (C37) and (C38) together with
(D2), we obtain for the fully-connected version

C1 =
1

Nρ0
⟨δm0

1δm
−0
1 ⟩, C2 =

1

N
⟨δm0

1δm
−0
1 ⟩, C3 =

1

N
⟨δm0

1δρ
−0
1 ⟩, C4 = 0 . (D3)

Note that to obtain (D3), we have used that N = Lρ0. As mass is conserved in the system,
we have that δρ01 ∝

∫ L

0
δρ1(z)dz = 0. Using (C32c), it first entails that ⟨δm0

1δρ
−0
1 ⟩ = 0 and

we thus further simplify the Ci’s as

C1 =
1

Nρ0
⟨δm0

1δm
−0
1 ⟩, C2 =

1

N
⟨δm0

1δm
−0
1 ⟩, C3 = C4 = 0 . (D4)

Mass conservation also entails, using (C30), that δm0
1 evolves according to the following

Langevin equation
˙δm0
1 = A0

22δm
0
1 +

√
2ρ0 η

0 , (D5)

where η0 is a Gaussian white noise such that ⟨η0(t)η0(t′)⟩ = L−1δ(t− t′) and A0
22 is given by

(C54c) as

A0
22 =− 2Γ

(
1 +

β2

2

m2
0

ρ20

)
+ 2Γ

[
β

(
1 +

β2

2

m0

ρ0

)
− β2m

2
0

ρ20

]
. (D6)

Using Itō calculus on (D5), and taking care of the factor L−1 in (C32a), we obtain

⟨δm0
1δm

−0
1 ⟩ = ρ0

2Γ
[
1 + β2

2

m2
0

ρ20
− β

(
1 + β2

2
m0

ρ0

)
+ β2m

3
0

ρ30

] . (D7)

Expanding ⟨δm0
1δm

−0
1 ⟩ to first order in m0, we obtain

⟨δm0
1δm

−0
1 ⟩ = ρ0

2Γ(1− β)

(
1 +

β2

2(1− β)

m0

ρ0
+O(m2

0)

)
(D8)

Inserting the above expansion into (D4), and then injecting the resulting Ci’s into (C28) yields
∆F for the fully connected model

∆F =
m0

N

(
β2

2
+

β2

1− β

)
+O(m2

0) . (D9)

Without changing the leading order in the noise strength σ of ∆F , we can replace m0 and ρ0
by m̃ = ⟨m⟩ and ρ̃ = ⟨ρ⟩ in (D9). This substitution gives back (48) of main text

∆F =
m̃

N

(
β2

2
+

β2

1− β

)
+O(m̃2) . (D10)
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E. The Toner-Tu model

E.1. Linear stability analysis

In this appendix, we analyze the stability of the perturbations δρ and δW for the Toner-Tu
model (55). The growth rates of the perturbation are the eigenvalues of the stability matrix
appearing in Eq. (56). They read:

λ± =
− (ξ5q

2 + iξ4q − ξ3)±
√
∆

2
, (E1)

with
∆ =

(
ξ5q

2 + iξ4q − ξ3
)2 − 4v

(
iqξ1 + ξ2q

2
)
. (E2)

The stability of the homogeneous solution is determined by the sign of the real part of the
eigenvalues λ±. An unstable mode exists as soon as |ℜ(ξ5q2 + iξ4q − ξ3)| < |ℜ(

√
∆)|. We

note that
2ℜ(

√
∆)2 − 2ℜ

(
ξ5q

2 + iξ4q − ξ3
)2

= −a(q) +
√

a2(q) + b(q) , (E3)

where a(q) and b(q) are real numbers given by

a(q) =ξ4q
2 + (ξ5q

2 − ξ3)
2 + 4vξ2q

2 (E4)

b(q) =16q2v
(
ξ21v + ξ3ξ4ξ1 − ξ2ξ

2
3

)
+ 16q4vξ5 (2ξ2 ξ3 − ξ1 ξ4)− 16q6

(
ξ2 ξ

2
5 v
)
. (E5)

Since a(q) is always positive, we deduce that an unstable mode must have b(q) > 0, which is
the condition discussed in the main text.

E.2. Renormalization for Voronoi-based alignment

This appendix is devoted to the derivation of the linear mass in the renormalized
hydrodynamics (65) of the main text. Following the scheme developed in section 4.1, we
call ρ0 and W0 the mean-field solutions of (64) without noise (ie with σ = 0). They are
implicitly defined through

∂tρ0 + v∂xW0 = 0 (E6a)

∂tW0 +
λ

ρ
W0∂xW0 = −v

2
∇ρ0 +D∂xxW0 − αW0 −

γ

ρ20
W 3

0 . (E6b)

We now introduce the perturbative series

ρ = ρ0 +
√
σ δρ1 + σδρ2 + .. , W = W0 +

√
σ δW1 + σδW2 + .. . (E7)

Injecting (E7) into (64) and equating terms of order σk/2 yields the evolution equation for δρk
and δWk. Further using the definition Ftt = −αW − γW 3/ρ2, we obtain, for k = 1

∂tδρ1 =− v∂xδW1 + ∂x

(√
2ϵρ0η1

)
(E8a)

∂tδW1 =D∂xxδW1 −
v

2
∂xδρ1 −

λ

ρ0
W0∂xW1 −

λ

ρ0
W1∂xW0 +

λ

ρ20
δρ1W0∂xW0

+
∂Ftt

∂ρ
δρ1 +

∂Ftt

∂W
δW1 +

√
2ρ0 η2 . (E8b)
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while for k = 2 we get

∂tδρ2 =− v∂xδW2 + ∂x

(√
ϵδρ1√
2ρ0

η1

)
(E9a)

∂tδW2 =D∂xxδW2 −
v

2
∂xδρ2 +

∂Ftt

∂ρ
δρ2 +

∂Ftt

∂W
δW2 +

∂2Ftt

∂W 2

δW 2
1

2
+

∂2Ftt

∂ρ2
δρ21
2

+
∂2Ftt

∂W∂ρ
δW1δρ1 −

λ

ρ0
δW1∂xδW1 −

λ

ρ30
W0∂xW0δρ

2
1 −

λ

ρ0
δW2∂xW0 −

λ

ρ0
W0∂xδW2

+
λ

ρ20
δρ1δW1∂xW0 +

λ

ρ20
W0δρ1∂xδW1 +

λ

ρ20
δρ2W0∂xW0 +

δρ1√
2ρ0

η2 . (E9b)

Averaging (E8) over the noise with Itō prescription gives

∂t⟨δρ1⟩ =− v∂x⟨δW1⟩ (E10a)

∂t⟨δW1⟩ =D∂xx⟨δW1⟩ −
v

2
∂x⟨δρ1⟩ −

λ

ρ0
W0∂x⟨W1⟩ −

λ

ρ0
⟨W1⟩∂xW0 +

λ

ρ20
⟨δρ1⟩W0∂xW0

+
∂Ftt

∂ρ
⟨δρ1⟩+

∂Ftt

∂W
⟨δW1⟩ . (E10b)

Doing likewise for (E9) yields

∂t⟨δρ2⟩ =− v∂x⟨δW2⟩ (E11a)

∂t⟨δW2⟩ =D∂xx⟨δW2⟩ −
v

2
∂x⟨δρ2⟩+

∂Ftt

∂ρ
⟨δρ2⟩+

∂Ftt

∂W
⟨δW2⟩+

∂2Ftt

∂W 2

⟨δW 2
1 ⟩

2
+

∂2Ftt

∂ρ2
⟨δρ21⟩
2

+
∂2Ftt

∂W∂ρ
⟨δW1δρ1⟩ −

λ

ρ0
⟨δW1∂xδW1⟩ −

λ

ρ30
W0∂xW0⟨δρ21⟩ −

λ

ρ0
⟨δW2⟩∂xW0

− λ

ρ0
W0∂x⟨δW2⟩+

λ

ρ20
⟨δρ1δW1⟩∂xW0 +

λ

ρ20
W0⟨δρ1∂xδW1⟩+

λ

ρ20
⟨δρ2⟩W0∂xW0 ,

(E11b)

Summing together (E6a),
√
σ times (E10a), and σ times (E11a) gives the evolution of ρ̃ up to

order σ

∂tρ̃ = −v∂xW̃ , (E12)

while adding (E6b),
√
σ times (E10b), and σ times (E11b) yields the evolution of m̃ up to

order σ

∂tW̃ =D∂xxW̃ − λ

ρ̃
W̃∂xW̃ − v

2
∂xρ̃+ αW̃ − γ

ρ̃2
W̃ 3 + Ftt(ρ̃, W̃ ) + σ

[
∂2Ftt

∂W 2

(
⟨δW 2

1 ⟩ − ⟨δW1⟩2

2

)
+

∂2Ftt

∂ρ2

(
⟨δρ21⟩ − ⟨δρ1⟩2

2

)
+

∂2Ftt

∂W∂ρ
(⟨δm1δρ1⟩ − ⟨δW1⟩⟨δρ1⟩)

− λ

ρ0
(⟨δW1∂xδW1⟩ − ⟨δW1⟩∂x⟨δW1⟩)−

λ

ρ30
W0∂xW0

(
⟨δρ21⟩ − ⟨δρ1⟩2

)
(E13)

+
λ

ρ20
∂xW0 (⟨δρ1δW1⟩ − ⟨δρ1⟩⟨δW1⟩) +

λ

ρ20
W0 (⟨δρ1∂xδW1⟩ − ⟨δρ1⟩∂x⟨W1⟩)

]
.
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The terms proportional to ∂xW0 in (E13) can only renormalize λ, not Ftt so that we set them
to zero and focus on computing

∆Ftt =
∂2Ftt

∂W 2

(
⟨δW 2

1 ⟩ − ⟨δW1⟩2

2

)
+

∂2Ftt

∂ρ2

(
⟨δρ21⟩ − ⟨δρ1⟩2

2

)
+

λ

ρ20
W0

(
⟨δρ1∂xδW1⟩

− ⟨δρ1⟩∂x⟨W1⟩
)
+

∂2Ftt

∂W∂ρ
(⟨δm1δρ1⟩ − ⟨δW1⟩⟨δρ1⟩)−

λ

ρ0

(
⟨δW1∂xδW1⟩

− ⟨δW1⟩∂x⟨δW1⟩
)
. (E14)

As we are solely interested in the renormalization of α, we only have to derive the correlators
involving δρ1 and δW1 in ∆Ftt to order W0. To perform this derivation, we have to assume
that δρ1 and δW1 are fast mode varying on lengthscales much smaller than those of ρ0 and W0.
Under this assumption, ρ0(x, t), W0(x, t) and ∂xW0(x, t) entering in the linearized evolution
(E8) for δρ1 and δW1 can be considered as constants. This adiabatic approximation allows us
to compute the correlators in terms of ρ0, W0 and ∂xW0 as constants and to re-establish their
dependency on x and t a posteriori. Note that any dependency of the correlators on ∂xW0 will
renormalize λ, not α. Thus, to simplify the derivation of α̂ and get rid of any dependency on
∂xW0 in the correlators, we set ∂xW0 = 0 in the linearized evolution (E8)

∂tδρ1 =− v∂xδW1 + ∂x

(√
2ϵρ0η1

)
(E15a)

∂tδW1 =D∂xxδW1 −
v

2
∂xδρ1 −

λ

ρ0
W0∂xW1 +

∂Ftt

∂ρ
δρ1 +

∂Ftt

∂W
δW1 +

√
2ρ0 η2 . (E15b)

Multiplying (E15a) and (E15b) by eiqx/L and integrating over x yields the time-evolution of
the q-th Fourier modes

∂t

(
δρq1
δW q

1

)
=

(
T q
11 T q

12

T q
21 T q

22

)(
δρq1
δW q

1

)
+

(√
2ϵρ0 iq η

q
1√

2ρ0 η
q
2

)
, (E16)

where the convention for δρq1 and δW q
1 is given in (A1). Note that ηq1 and ηq2 are the q-th

Fourier modes of the two uncorrelated Gaussian white noises η1 and η2. Their correlations
reads ⟨ηqkη

q′

l ⟩ = L−1δk,lδ(t− t′)δq+q′,0. Finally, the matrix coefficients T q
kl are given by

T q
11 = 0 , T q

12 =− ivq , T q
21 =− iq

v

2
+ 2γ

W 3
0

ρ30
, T q

22 =− λiq
W0

ρ0
−Dq2 − α− 3γ

W 2
0

ρ20
.

(E17)

To compute the correlators involved in ∆Ftt, we use Itō calculus on the stochastic system
(E16) to get the following closed system of equations

d

dt
⟨δρq1δρ

q′

1 ⟩ =(T q
11 + T q′

11)⟨δρ
q
1δρ

q′

1 ⟩+ T q
12⟨δW

q
1 δρ

q′

1 ⟩+ T q′

12⟨δρ
q
1δW

q′

1 ⟩ − 2ϵρ0q
2

L
δq+q′,0 = 0

(E18a)
d

dt
⟨δW q

1 δρ
q′

1 ⟩ =(T q
22 + T q′

11)⟨δW
q
1 δρ

q′

1 ⟩+ T q
21⟨δρ

q
1δρ

q′

1 ⟩+ T q′

12⟨δW
q
1 δW

q′

1 ⟩ = 0 (E18b)

d

dt
⟨δW q

1 δW
q′

1 ⟩ =(T q
22 + T q′

22)⟨δW
q
1 δW

q′

1 ⟩+ T q
21⟨δρ

q
1δW

q′

1 ⟩+ T q′

21⟨δW
q
1 δρ

q′

1 ⟩+
2ρ0
L

δq+q′,0 = 0 ,

(E18c)
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where the last equality once again stems from working in the steady state. Inverting this
system yields

⟨δW q
1 δW

q′

1 ⟩ =gww(q)
δq+q′,0

L
, ⟨δρq1δρ

q′

1 ⟩ =gρρ(q)
δq+q′,0

L
, ⟨δW q

1 δρ
q′

1 ⟩ =gwρ(q)
δq+q′,0

L
,

(E19)

where, to first order in W0, the functions gww(q), gρρ(q) and gwρ(q) are given by

gww(q) =
ρ0
2D

[
−ϵ+

2D + ϵα

Dq2 + α

]
+O

(
W 2

0

)
(E20a)

gρρ(q) =
ρ0
D

[
−2

D2q2ϵ

v2
− 2

Dϵα

v2
− ϵ+

2D + αϵ

Dq2 + α

]
+O

(
W 2

0

)
(E20b)

gwρ(q) =
ϵ

Dv

[
iqDρ0 +W0λ−W0

λα

Dq2 + α

]
+O

(
W 2

0

)
. (E20c)

At this point we note that gww(q), gρρ(q) and gwρ(q) contains a polynomial part and a
rational part in the wave-vector q. Upon Fourier transforming back in real space using (A2),
these polynomial parts will yield terms proportional to δ(x − y) in the two-point functions
⟨δρ1(x)δρ1(y)⟩, ⟨δW1(x)δW1(y)⟩ and ⟨δW1(x)δρ1(y)⟩. These delta peaks are unphysical
and to regularize the correlators taken at x = y we hereafter neglect the polynomial parts to
consider only that

gww(q) =
ρ0
2D

2D + ϵα

Dq2 + α
, gρρ(q) =

ρ0
D

2D + αϵ

Dq2 + α
, gwρ(q) =− ϵW0

Dv

λα

Dq2 + α
. (E21)

We note that we can integrate gww(q), gρρ(q) and gwρ(q) over q only if α > 0, which means
that we have to restrict our study to the high temperature phase where such a condition is
respected. We finally obtain

⟨δρ21⟩ =
∫

dq

2π
gρρ(q) =

ρ0(2D + αϵ)

2D
√

D|α|
, ⟨δW 2

1 ⟩ =
∫

dq

2π
gww(q) =

ρ0(2D + αϵ)

4D
√
D|α|

⟨δW1δρ1⟩ =
∫

dq

2π
gwρ(q) = −W0

ϵλα

2Dv
√
D|α|

, ⟨δW1∂xδW1⟩ =
∫

dq

2π
iqgww(q) = 0 .

(E22)

Injecting the above expression (E22) for the correlators in (E14) yields the final expression
for ∆Ftt as

∆Ftt =
1

2

∂2Ftt

∂W 2
⟨δW 2

1 ⟩+O(W 2
0 ) = −3γ

ρ0

2D + αϵ

4D
√

D|α|
W0 +O(W 2

0 ) . (E23)

We readily deduce from the above expression the formula (66) of main text

α̂ = α + σ
3γ

ρ̃

2D + αϵ

4D
√
D|α|

. (E24)
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F. Details of the numerical simulations

F.1. Stochastic partial differential equations

The numerical integrations of the stochastic PDEs were carried out using a semi-spectral
method with a semi-implicit Euler scheme. At every time step, the Gaussian noise fields
are drawn in direct q space. The latter being discretized, at every lattice site one draws a
Gaussian random number of zero mean and variance

√
2Ddt/dx. All the non-linearities are

also computed in direct space. All fields are then Fourier-transformed to q-space, where the
time-stepping takes place. Anti-aliasing with the standard 3/2 rule was carried out after time-
stepping.

F.2. Microscopic simulations of the AIM

The simulations of the microscopic AIM rely on a parallel update of all particles. Each spin
σi has a probability W (σi)dt to flip during a time-step dt, where W (σi) is given by (6) and
depends on the type of alignment considered: metric (2), k-nearest (3) or Voronoi (4). For the
determination of the Voronoi neighbors, we used the CGAL package [60] for constructing the
Voronoi tesselation. When computing the local magnetization, see Eq. (7) we do not include
the spin i itself in the set of neighbours. Results do not depend on this choice.

F.3. Microscopic simulations of the Vicsek Model

The simulations of the microscopic AIM rely on a parallel update of all particles. At each
time-step dt, the propulsion vectors ui’s align according to (1). After this alignment step, the
position ri’s of the particles are simply advected by the ui’s as

ri(t+ dt) = ri(t) + uidt . (F1)

As above, we used the CGAL package to determine the Voronoi tesselation.
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