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The majority of dynamical studies in power systems focus on the high-voltage transmission grids where
models consider large generators interacting with crude aggregations of individual small loads. However, new
phenomena have been observed indicating that the spatial distribution of collective, nonlinear contribution of
these small loads in the low-voltage distribution grid is crucial to the outcome of these dynamical transients. To
elucidate the phenomenon, we study the dynamics of voltage and power flows in a spatially extended distribution
feeder (circuit) connecting many asynchronous induction motors and discover that this relatively simple 1 + 1
(space + time) dimensional system exhibits a plethora of nontrivial spatiotemporal effects, some of which may
be dangerous for power system stability. Long-range motor-motor interactions mediated by circuit voltage and
electrical power flows result in coexistence and segregation of spatially extended phases defined by individual
motor states, a “normal” state where the motors’ mechanical (rotation) frequency is slightly smaller than the
nominal frequency of the basic ac flows and a “stalled” state where the mechanical frequency is small. Transitions
between the two states can be initiated by a perturbation of the voltage or base frequency at the head of the
distribution feeder. Such behavior is typical of first-order phase transitions in physics, and this 1 + 1 dimensional
model shows many other properties of a first-order phase transition with the spatial distribution of the motors’
mechanical frequency playing the role of the order parameter. In particular, we observe (a) propagation of the
phase-transition front with the constant speed (in very long feeders) and (b) hysteresis in transitions between the
normal and stalled (or partially stalled) phases.
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I. INTRODUCTION

Power systems are used to generate and transfer energy
to electrical loads. In today’s grid, generation is primarily
done at large, centralized power stations (∼100’s of MW)
and the transfer primarily occurs via alternating currents (ac)
in national-scale, highly meshed, high-voltage transmission
grids. A subset of nodes (substations) in the transmission
grid transform the high-voltage to a medium-voltage level
and interface to distribution grids, however, another change
occurs at the substation. The meshed network of national-scale
transmission changes to many radial or treelike structures in
the distribution system whose spatial extent is only ∼1–10 km.
Each radial circuit, also called a “feeder,” distributes the power
delivered to the substation by the transmission system to the
thousands of small electrical loads (∼1 kW) spatially spread
along its length.

Even though ac electrical generation and transmission grids
are extended over large spatial scales, they are synchronized,
i.e., power flows over the transmission lines create dynamical
coupling between the large rotating generators forcing them
to rotate in unison. Perturbations to this synchronized system
result in dynamics and transients spanning a large range of tem-
poral scales from milliseconds to many minutes. Many studies
have addressed the dynamics of these large-scale transmission
grids. Although many unresolved dynamic problems in the
transmission grid remain, recent years have witnessed new
phenomena that have refocused our attention on dynamics and
transients occurring in the smaller-scale distribution circuits
[1,2]. Although these phenomena occur on smaller scales,
they involve collective behavior of many individual small

nonlinear loads, and even coupling several distribution circuits,
creating a significant impact on the larger-scale transmission
system.

Perhaps the most drastic of these phenomena is voltage
collapse [3–8]. Here, a quasistatic increase in loading pushes
the distribution feeder to a bifurcation where the stationary
normal- (high-) voltage solution is lost and the feeder
“collapses” to an undesirable low-voltage solution that is
dangerous for power system stability. However, even for
moderately loaded feeders that are far from this critical point,
the nonlinearity of electrical loads may result in the emergence
of multiple stationary solutions. In contrast to the case just
described, these solutions can not be reached via quasistatic
evolution of the electrical loads. Instead, a significant and
nonlinear perturbation to the feeder creates a dynamical
trajectory that terminates in one of these additional solutions
that may also be a “bad solution” from the standpoint of voltage
level, power system losses, stability, and equipment damage.
To understand the possibility of this unwelcome outcome,
one needs to go beyond the traditional static description and
analyze dynamics of the distribution system.

The spatiotemporal dynamics we seek to describe occur
within an individual radial distribution feeder that connects
many (∼thousands) small loads to a substation. We consider
electromechanical dynamics occurring on scales ranging
from fractions of a second to tens of seconds and analyze
the spatial distribution of power flows along the circuit
and the spatiotemporal transients stimulated by exogenous
disturbances in the voltage and base frequency at the head
of the distribution feeder. Such disturbances, which primarily
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originate from faults and/or irregularities in the high-voltage
transmission system, propagate through from load to load via
power flows in the distribution feeder. The propagation is
affected by the electromechanical response of individual loads,
and here we focus on the effects of nonlinear loads such as
asynchronous (i.e., induction) motors. Typical electrodynamic
transients propagate with speed comparable to the speed of
light and damp out in tens of milliseconds and thus are not
important in our analysis. On the other hand, composition
of loads connected to a distribution feeder changes on much
longer time scales (∼minutes) and are taken as fixed on the
time scale of electromechanical dynamics of interest in this
work.

An interesting and key feature of the dynamics is the long-
range coupling between the spatially distributed loads created
by power flows along the feeder. These coupled dynamics are
nontrivial to model and investigate, however, they are also
extremely important for practical power engineering because
our model solutions reveal serious problems for control and
operation of power systems. One such problem that motivates
our study is the phenomenon of the fault-induced delayed
voltage recovery (FIDVR) [1,2,9–11]. A FIDVR event is
typically initiated by a fault on the transmission grid near a
substation creating large fault currents that temporarily depress
the voltage at the substation, perhaps for as little at two
cycles of the nominally 50/60 Hz ac frequency (∼30 ms). The
voltage depression propagates into the substation’s distribution
feeders, causing an almost instantaneous reduction in the
electrical torque generated by the connected induction motors,
however, the mechanical torque on the motors does not change
instantaneously and the motors begin to decelerate. If the
transmission fault and voltage depression last long enough,
many of the induction motors along the feeder may stall.
When the fault on the transmission grid is cleared, the voltage
at the substation returns to near normal levels, however, a
stalled induction motor draws large in-rush currents while at
near zero rotation speed (mechanical frequency). The time
synchronization of these in-rush currents causes large voltage
drops in the distribution feeder and may hold the voltage at
locations remote from the substation below a critical voltage
for restarting. Crucially, these remote motors remain stalled
(near zero mechanical frequency), and their large current draw
stabilizes this spatially extended, partially stalled state.

The tendency for a transmission fault to result in FIDVR
may depend on many fault, distribution feeder, and motor
parameters, e.g., voltage drop magnitude and duration; length,
resistance, and reactance of the feeder; type, rotational inertia,
and density of the induction motor loading; and possible post-
fault corrective control actions. The qualitative description of
FIDVR given above provides an intuitive understanding of how
some of these parameters affect the dynamics leading to the
undesirable and potentially dangerous partially stalled state. It
certainly indicates that, without some sort of corrective actions,
FIDVR will become more and more frequent because of the
recent trends to more air conditioning driven by easy-to-stall,
low inertia motors. However, the dynamics that leads to FIDVR
is not generally understood and thus presumed somewhat
mysterious in power engineering practice. The goal of this
paper is to provide an understanding of these interesting and
practically important distribution grid dynamics.

FIDVR is an example of a broader class of problems
where physics and dynamical systems modeling can provide
significant insight and predictive power that are generally
lacking. Another example is given by electromechanical
waves propagating through transmission grids [12,13], as
well as transients associated with the loss of synchrony in
power systems [14,15]. The key unifying feature of all these
phenomena is in the nontrivial interplay of spatial coupling of
individual (possibly nonlinear) dynamics via power flows over
the electrical network. We believe that important insights into
these complex dynamics can be gained by approaching such
spatiotemporal phenomena from a homogenized prospective,
i.e., studying the electrical grid not as a set of individual devices
but rather as a spatially extended and continuous medium in
the limit where the number of individual elements of the power
system becomes infinite. This abstract continuous-medium
approach, pioneered for the case of electromechanical waves
over transmission systems in Refs. [12,13] and for the case of
a radial-linear distribution system in Ref. [16] is advantageous
as it enables (a) a simpler analysis and deep qualitative physical
understanding of the underlying phenomena (e.g., of FIDVR
and electromechanical waves); (b) flexibility in simulations;
and (c) developing model reduction algorithms for faster state
estimation and system simulation.

Motivated by the discussion above, the main goal of this
paper is to formulate the simplest but still realistic 1 + 1
(space + time continuous) model that predicts and explains
interesting and important spatiotemporal phenomena in a
distribution feeder loaded with induction motors which can
be in a normal or stalled state. The most important results
reported in this paper are as follows:

(i) Extending the previous works [1,11,17–20], we show
that if the local voltage falls sufficiently low, an individual
asynchronous motor can be in either of the following two
states: (1) a normal state characterized by mechanical fre-
quency ω which is slightly lower than the base electrical
frequency ω0 of the system; (2) a stalled state characterized
by low or zero mechanical frequency. Both states are locally
stable but can evolve into each other under sufficiently large
perturbations.

(ii) In sufficiently long feeders, a partially stalled phase can
emerge where the feeder splits into head and tail parts with
the motors of the head (tail) being in the normal (stalled) state.
Motors in the stalled state may occupy the entire distribution
feeder or, if the feeder is very long, stalled portion can coexist
with the normally running one. In the latter case, there exist
multiple, partially stalled phases characterized by different
proportions of the head (normal) and tail (stalled) parts.

(iii) The steady partially stalled phases can be interpreted
as showing coexistence of the two states where the local
mechanical frequency (of the motors) plays the role of “order
parameter.” Transitions between the phases are classified as
first order, using standard physics terminology.

(iv) These transitions are hysteretic (not reversible), i.e., a
perturbation leading to transition from the normal phase to the
stalled phase is not an inverse of the perturbation leading from
the stalled phase to the normal phase. The dynamics of the two
transitions is also different, in particular, fronts of the phase
transitions have different shapes, and to stabilize one transition
can take significantly longer than the other.
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Material in the paper is organized as follows. Static models
of single induction motor, two-bus system, and the DistFlow
equations of [22,23] are discussed in Secs. II A, II B, and III A,
respectively. A dynamic model of a distribution feeder loaded
with induction motors and 1 + 1 space-time continuous model
of this feeder is introduced and discussed in Secs. III B
and III C. Section IV A discusses how single-motor bistability
translates into the emergence of multiple phases of the feeder
with supporting numerical experiments in Sec. IV B and
special features of the phase transitions in Sec. IV C. Section V
is devoted to in-depth discussion of the results of our numerical
experiments. Section V A discusses the dynamics following
a fault at the head of the feeder. Section V B analyzes the
recovery from a stalled state. Section V C explores the phase
space of parameters that governs whether or not a feeder will
enter a stalled or normal state following a fault. Finally, we
summarize and describe a path forward in Sec. VI. Auxiliary
information explaining details of our simulations can be
found in Appendix A. Appendix B provides captions for the
illustrative movies of the phase transition and fault recovery
processes available in the Supplemental Material [21].

II. SINGLE INDUCTION MOTOR MODELS

A. Static motor model

Induction motors play a significant role in FIDVR, as it
is currently understood. Here, we describe the features of
induction motors that are important for the rest of our work.
Although motor dynamics will be added later, we first adopt a
simple static electrical model of an induction (asynchronous)
motor rotating at mechanical frequency ω and connected to a
distribution circuit being driven at a base frequency ω0 [11]:

P = sRmv2

R2
m + s2X2

m

, (1)

Q = s2Xmv2

R2
m + s2X2

m

. (2)

Here, P and Q are real and reactive powers drawn by the motor;
s = 1 − ω/ω0 is the slip parameter of the motor 0 � s < 1;
v is the voltage at the motor terminals; Xm,Rm are internal
reactance and resistance of the motor, usually Rm/Xm = 0.1 ÷
0.5. For steady rotation frequency at ω, the balance of electric
and mechanical torques for the induction motor is

P

ω0
= T (ω/ω0), (3)

where T (ω/ω0) is the rotation speed-dependent torque applied
to the motor shaft by the mechanical load, which is typically
parametrized by

T (ω/ω0) = T0

(
ω

ω0

)α

. (4)

Here, T0 is a reference mechanical torque and α is indicative of
different types of mechanical loads with α = 1 typical of fan
loads and α < 1 typical of air-conditioning loads. If α < αc �
1 and T0 is fixed, one observes the emergence of three solutions
when v is in a range between two spinodal voltages v−

c and
v+

c , i.e., for v−
c < v < v+

c (see Fig. 1). These solutions have
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FIG. 1. (Color online) Electric and mechanical torques as func-
tions of the mechanical frequency ω/ω0 for a range of motor terminal
voltages v, reference mechanical torque T0 = 0.32, and α = 0.1. For
the v = 0.86 electrical torque curve (red triangles), there are three
equilibrium solutions indicated by intersections with the mechanical
torque curve (black solid line). The solution with the highest ω/ω0 is
the “normal” stable solution with the induction motor rotating near
the grid frequency ω0. The “stalled state” with ω/ω0 � 0 is also stable
while the intermediate solution is unstable. For v > v+

c = 0.9 (light
blue line with plus signs), there is only one solution corresponding to
the normal state. For v < v−

c = 0.83 (green dashed line), there is only
one solution corresponding to the stalled state. The points (a,b,c,d)
correspond to the same labels in Fig. 2.

widely different ω which leads to hysteresis and the interesting
dynamical behavior explored in the rest of this paper.

Stability analysis (see Sec. II B for details) shows that the
two extreme solutions (ω ≈ 0 and ω ≈ ω0) are both stable
while the solution in the middle is unstable. The consequence
is hysteretic behavior of the motor frequency ω as a function
of the voltage v, as displayed in Fig. 2. Starting in the high-
voltage normal state (say v ∼ 1), we decrease v slowly along
the dashed red curve passing through state d. If we further
decrease v to state c, the normal state suddenly disappears, and
the motor makes a transition to the stalled state at a. Similarly,
if we start from the low-voltage stalled state (say v ∼ 0.75 on
the black curve) and v is increased slowly through state a to
b, the stalled state disappears and the motor makes a transition
to the normal state at d. The states (a,b,c,d) are also marked
in Fig. 1, and the same hysteresis loop can be traced out there.

After elimination of the auxiliary variable ω, Eqs. (1)–(4)
describe the dependence of the power flows (P,Q) on terminal
voltage. If the reactance-to-resistance ratio of the motor,
Xm/Rm, is sufficiently small, the hysteresis observed for
mechanical frequency in Fig. 2 translates into hysteresis of real
and reactive powers as seen by the multivalued dependence of
(P,Q) on v in Fig. 3. Between the spinodal voltages v−

c and
v+

c , there exist three solutions with different values of (P,Q)
for the same value of voltage. Of the three solutions, the top
and bottom are stable while the middle solution is unstable.
Similar to Fig. 2, we can follow an adiabatic evolution of the
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FIG. 2. (Color online) Hysteretic behavior of an induction motor
in Fig. 1 as the voltage v at its terminals is varied. The dashed
red (solid black) curves indicate the path of equilibrium states as
the voltage v is decreased (increased) starting from the high-voltage
normal (low-voltage stalled) state. The vertical lines at the spinodal
voltages v±

c indicated the abrupt hysteretic transitions between states.
v±

c correspond to the same labels in the legend of Figs. 1 and 3. The
points (a,b,c,d) correspond to the states where the motor must make
transitions from normal to stalled (c → a) and from stalled to normal
(b → d).

motor terminal voltage. Following the reactive power curve
(red) and starting in the normal state with v ∼ 1, we decrease
the voltage through state d and to state c. Any further reduction
of v forces the motor to make a discontinuous jump to state
a which is accompanied by a large increase in reactive power
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FIG. 3. (Color online) Typical (P,Q) versus v curves for the
same motor as in Figs. 1 and 2 and described by Eqs. (1)–(4).
Three solutions (two stable and one unstable) are observed between
the spinodal voltages, i.e., v−

c < v < v+
c . Solid and dashed curves

(the latter partially covered by solid) show trajectory of the system
under adiabatic evolution starting from low-voltage and high-voltage
regimes, respectively. The points (a,b,c,d) label the reactive power
curve (red in color and dark gray in black and white) and correspond
to the same labels in Figs. 1 and 2. Here, Xm/Rm = 0.375.

Q. Alternatively, we may start in the stalled state with v ∼ 0.7
and slowly increase v through state a to b where the motor
is forced to jump to state d accompanied by a discontinuous
decrease in Q. As discussed later, these discontinuous jumps
in Q play a significant role is stabilizing the spatially extended
stalled state and in the recovery from the stalled state to normal
state.

B. Dynamical motor model

To study the important yet generic aspects of the dynamics
in distribution circuits, we generalize Eqs. (1)–(3) to include
induction motor dynamics. Considering for the moment a sin-
gle induction motor, an imbalance in electrical and mechanical
torques will cause a change in the motor’s rotational frequency
given by

M
d

dt
ω = P

ω0
− T0

(
ω

ω0

)α

, (5)

where M is the motor’s moment of inertia. Torque imbalances
in Eq. (5) can be driven in two ways: directly via changes in
the base frequency ω0 in Eq. (5) or indirectly via changes P

driven by changes in v in Eq. (1). The coupling of Eq. (5) to
ω0 will not be strong because ω0 is determined by the global
balance of generation and load across the entire transmission
system. We would not expect the local distribution dynamics
under consideration here to affect ω0 to a degree that we would
have to consider its effect back on the distribution dynamics
via Eq. (5). Therefore, we can generally ignore the dynamics
of ω0 and consider it an imposed exogenous parameter.

In contrast, changes in local voltage are strongly coupled
to changes in the local flow of real and reactive powers. As we
have seen in Sec. II A, changes in voltage can lead to drastic
and hysteretic changes in a motor’s frequency ω resulting in
a strong coupling back to the dynamics in Eq. (5). Therefore,
we must consider the possibility that voltage dynamics is
important for distribution feeder dynamics. However, the
dynamics of v is fundamentally different than ω because
the relaxation of v is entirely electrical as opposed to the
mechanical dynamics of ω, i.e.,

Q = s2Xm

R2
m + s2X2

m

(
v2 + (τ/2)

d

dt
v2

)
, (6)

where τ is the characteristic time of this purely electrical
process (see, e.g., the Appendix of Pereira et al. [17]). In our
numerical experiments, we observe that the important basic
phenomena discussed in the paper are much more sensitive
to variations in the moment of inertia M than to variations in
τ and that setting τ = 0 still reveals the dynamical processes
important for understanding FIDVR. With τ = 0, Eq. (6) is
now equivalent to its static version in Eq. (2).

With the dynamics now fully specified by Eq. (5), we can
now justify the local (single motor) stability claims made in
Sec. II A by simple inspection of the equilibrium states in
Fig. 1. Here, stability (instability) is understood in terms of
the temporal decay (growth) of small perturbations to the
dynamics of Eq. (5). The black curve in this Fig. 1 represents
the mechanical torque on the motor while the colored curves
are the electrical torques (each representing a different v).
Consider state d in Fig. 1 which is representative of the
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normal states with ω/ω0 ∼ 1. If the motor speeds up slightly
(moves to the right along the light blue curve), the mechanical
torque becomes larger than the electrical torque and the
motor decelerates returning to d. If the motor slows slightly
(moves left), the electrical torque becomes larger while the
mechanical torque decreases returning the motor to state d.
All of the normal states, i.e., those like d with ω/ω0 ∼ 1, have
similar behavior and are therefore stable. State a in Fig. 1
is representative of the stalled states, and following the same
logic, we find that the mechanical torque is larger for a higher
ω (and smaller for a lower ω) showing that all of the stalled
states are stable. Following the same logic, we find the states
in-between the normal and stalled states (e.g., the state given
the intersection of red and black curves in Fig. 1) are unstable.

III. SPATIALLY CONTINUOUS FEEDER POWER
FLOW MODEL

In Sec. II, we described the dynamics of isolated induction
motors, i.e., motors whose terminal voltage v is specified and
not determined in part by interactions with other induction
motors or electrical loads. In this section, we consider power
flow models responsible for creating the long-range coupling
between the individual, local induction motor dynamics. We
start with a well-known discrete power flow model which
we then homogenize into a spatially continuous ordinary
differential equation (ODE) representation. We then incor-
porate a homogenized version of the individual induction
motor dynamics to create a partial differential equation (PDE)
representation of electrical feeder dynamics.

A. Discrete power flow model: DistFlow equations

The flow of electric power in the quasistatic approximation
is controlled by the Kirchoff laws. The DistFlow equations
[22,23] are these equations, written in terms of power flows
and in a convenient form for the radial or treelike distribution
circuit with a discrete set of loads shown schematically in
Fig. 4(a):

ρn+1 − ρn = Pn − rn

ρ2
n + φ2

n

v2
n

, (7)

φn+1 − φn = Qn − xn

ρ2
n + φ2

n

v2
n

, (8)

v2
n+1 − v2

n = −2(rnρn + xnφn) − (
r2
n + x2

n

)ρ2
n + φ2

n

v2
n

. (9)

Here, n = 0, . . . ,N − 1 enumerates the sequentially con-
nected buses of the circuit, and ρn,φn are the real and reactive
powers flowing from bus n to n + 1. vn is the bus voltage,
while Pn and Qn are the overall consumption of real and
reactive powers by the discrete load at bus n. The values of
rn and xn are the resistance and reactance of the discrete line
element connecting n and n + 1 buses. The voltage v0 at the
beginning of the line is nominally fixed by control equipment,
and there can be no flow of real or reactive power out of the end
of the circuit. These two observations provide the following
boundary conditions:

v0 = v0, ρN+1 = φN+1 = 0. (10)

FIG. 4. A feeder line modeled with (a) a discrete set of electrical
loads and with (b) a continuous distribution of loads.

Equations (7)–(10) combined with the given real and reac-
tive consumption patterns Pn,Qn for n = 1, . . . ,N , uniquely
define profile of voltage vn and power flows ρn,φn along the
circuit.

We note that the dynamical relaxation of distribution circuit
power flows ρn and φn will also occur on electrical time
scales, i.e., much faster than the mechanical dynamics in
Eq. (5). Therefore, the quasistatic power flows described in the
DistFlow formulation [22–26] in Eqs. (7)–(9) are a sufficient
starting point for the phenomena discussed in the paper.

B. Continuous power flow model

Following [16], the continuous form of the DistFlow
equations is

∂zρ = −p − r
ρ2 + φ2

v2
, (11)

∂zφ = −q − x
ρ2 + φ2

v2
, (12)

where z is the coordinate along the distri-
bution circuit, r , x are the per-unit-length
resistance and reactance densities of the lines
(assumed independent of z), and p(z) and q(z) are the
local densities of real and reactive powers consumed by the
density of the spatially continuous distribution of motors [16]
at the position z ∈ [0; L]. The power flows ρ and φ are related
to the voltage at the same position according to [16]

∂zv = − rρ + xφ

v
. (13)

C. PDE model of feeder dynamics

Instead of the standard voltage-independent (p,q) model of
distributed loads, discussed in Ref. [16], we consider the more
complex dynamical loads described above. The load densities
p(z) and q(z) are related to ω(z) and v(z) through the density
versions of Eqs. (1), (5), and (6):

μ
d

dt
ω = p

ω0
− t0

(
ω

ω0

)α

, (14)

p = srmv2

r2
m + s2x2

m

, (15)

q = s2xm

r2
m + s2x2

m

v2, (16)
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where the conversion to continuous form consists of replacing
Xm,Rm and P,Q,T0,M by the respective densities xm, rm and
p, q, t0, and μ. The new boundary conditions are

v(0) = v0, ρ(L) = φ(L) = 0. (17)

Equations (11)–(17) form our PDE model of a distribution
feeder loaded with induction motors. We assume that the
distributions of all the density parameters along the circuit are
known, and in this initial work, we assume these densities are
constant. Note that evolution in the model occurs solely due
to temporal derivatives in Eq. (14) representing mechanical
relaxation of the spatial distribution of motors.

IV. PHASE TRANSITIONS AND HYSTERESIS
IN A FEEDER

In this section, we discuss the physical picture of phase
transitions and hysteresis that emerges from analysis and
simulations of the 1 + 1 space-time PDE model of Eqs. (11)–
(17). In Sec. IV A, we begin with a qualitative description of
the hysteretic, phase-transition-like behavior of the distribu-
tion feeder. Section IV B discusses numerical results in the
framework of the qualitative arguments of Sec. IV A. Then,
in Sec. IV C we regress again to provide a general physics
discussion of the phase-transition special features observed in
the simulations.

A. From local (motor) to global (feeder): Qualitative picture

From the qualitative description of distribution circuit and
induction motor dynamics and FIDVR events given in Sec. I,
we make an analogy between FIDVR and a first-order phase
transition [27] where the z-dependent motor frequency ω(z)
plays the role of the order parameter, i.e., ω � ω0 in the
“normal phase” and ω ≈ 0 in the “stalled phase.” Recasting
Eq. (14) in terms of an ω-dependent potential U , we find

∂ω

∂t
= −∂U

∂ω
, (18)

where U = 1

μ

∫ ω

0

[
t0

(
ω′

ω0

)α

− p(ω′; v)

ω0

]
dω′, (19)

and p(ω; v) is defined by Eq. (15). The resulting effective
potential U (ω; v) is shown graphically in Fig. 5 for different
values of v.

We identify three different regimes in Fig. 5: (a) high
voltage v > v+

c (purple curve with squares) where the normal
state is the only stable solution, (b) intermediate voltage
v−

c < v < v+
c (red curve with triangles) where the normal

state and the stalled state coexist, i.e., motors can be in either
of the two states, and (c) low voltage v < v−

c (dark blue
solid line) where the stalled state is the only stable solution.
The boundaries between these regions occur at the spinodal
voltages v+

c (light blue line with plus signs) where the state
jumps from c to a in Figs. 1–3 and at v−

c (green dashed line)
where the state jumps from b to d in Figs. 1–3.

The high-voltage case (a) where the motors can only be
in the normal state is the desired regime for electrical grid
operations. The low-voltage case (c) is undesirable and is a
result of the electrical torque at low voltage not being able to
overcome the mechanical torque with the subsequent decline

FIG. 5. (Color online) Local potential U (ω) for different values
of the voltage v and α = 0.1 demonstrating the continuous evolution
of the normal and stalled states from only the normal state at high
voltage (purple curve with squares), coexisting normal and stalled
states at intermediate voltages (red curve with triangles), and only
the stalled state at low voltage (dark blue solid line). The light blue
curve with plus signs is for the spinodal voltage v+

c , the boundary
between the high- and intermediate-voltage cases. The green dashed
line is for spinodal voltage v−

c , the boundary between the low- and
intermediate-voltage cases. The inset is a view of the region near
ω = 0 showing the emergence of a stalled ω ≈ 0 minimum of the
potential for v < v+

c . The states labeled (a,b,c,d) are the same as
those in Figs. 1–3.

of ω to very small values. Case (b) also allows for the motors
to be in the normal state, but the existence of two minima
in the intermediate voltage range v−

c < v < v+
c (see Fig. 5) is

associated with the overlapping high- and low-voltage states in
Fig. 2 which can lead to local hysteretic behavior. For example,
a small-voltage perturbation can kick a motor from the normal
state over the potential barrier (see red curve in Fig. 5) where
Eq. (18) shows that it subsequently relaxes to the stalled state.
A simple reversal of the perturbation does not necessarily
lead to the reverse transition. This entirely local hysteresis
is important because it defines the possible states of motor
operation, however, it is the long-range interactions between
the local motor behavior that creates phase-transition-like
behavior with a phase boundary between separate normal and
stalled phases.

When a motor undergoes the local transition from a
normal to a stalled state, its rotational frequency ω changes
significantly. Motors distributed along the circuit do not
interact via ω, however, changes in ω drive large changes
in local reactive power density q (see Fig. 3) which couples to
all of the other motors via the power flows (ρ,φ) and voltages
in Eqs. (11)–(13). Crucially, if a perturbation causes a group
of motors in the tail segment of the feeder (z ∼ L) to enter
the stalled states (ω ≈ 0 or s ≈ 1), the increase in the local
reactive load density q drives an increase in the power flow
φ all along the feeder, and Eq. (13) shows that v will be
depressed at all z along the feeder. The voltage depression
will be the largest at the tail (z ∼ L), and if the depression is
severe enough, the terminal voltage of the normal-state motors
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FIG. 6. (Color online) Sequence of snapshots of a simulation for a feeder with L = 0.45 < Lc that undergoes a short voltage fault. In this
case, L is short enough so that the long-range interactions via power flows and voltage are insufficient to promote the local hysteresis at each
motor into globally hysteretic behavior. Snapshot (a) shows the beginning of the sequence (immediately post fault) where the small inertia
of the motors maintains ω/ω0 ∼ 1 (blue dots) so that the the reactive power load density q (pink right-pointing triangles) and reactive power
flow φ (red line with circles) are low and the voltage profile (black line with plus signs) relatively flat, although near 0.8. Snapshot (b) shows
the feeder at a time after the reduction of electrical torque has decelerated all of motors to ω/ω0 ∼ 0 (blue) with an associated rise in reactive
load density q (pink right-pointing triangles) and reactive power flow φ (red line with circles) causing the voltage profile (black line with plus
signs) to droop more than in (a). Snapshot (c) shows the situation after the fault is cleared with v0 restored to 1.0. Although the reactive power
flow φ is still high, it is insufficient to force v < v+

c and the motors relax back to the normal state as the phase front propagates from left to
right. The dynamical nature of this transition is evident from the real power load density p (yellow squares). The peak in p at the front is a
result of the acceleration of the motors as they transition from the stalled to normal state [see Eq. (14)]. The motors shown accelerating in (c)
eventually reach ω/ω0 ∼ 1, and the feeder relaxes to a globally normal state. See Appendix B and Movie 4 of the Supplemental Material [21]
for respective dynamical illustration.

neighboring the stalled tail section will drop below v−
c and the

local potential U (ω) changes from the purple (squares) or
light blue (plus signs) curves of Fig. 5 to the green (dashed)
or dark blue (solid) curves. Equation (18) shows that these
motors relax into the stalled state, further increasing the power
flows φ everywhere along feeder. This phase-transition front
continues to propagate toward z = 0 as the increases in local
q drive increases in the nonlocal φ which depress the nonlocal
v. The voltage boundary condition at the head of the feeder
[Eq. (17)] may stop the the front before its reaches all the way
back to z = 0, however, the establishment of a globally stalled
or partially stalled phase is hysteretic because simply reversing
the original spatially local perturbation, i.e., returning the small
section of motors in the tail to the running state, will not be
able to overcome the globally stalled state once it has become
established.

B. From local to global: Numerical experiments

Next, we perform numerical simulations of Eqs. (11)–(17)
to explore the qualitative dynamical description given above.
We examine how one property of the feeder, i.e., its length L,
affects the qualitative description given above by performing
two identical simulations except L = 0.45 in Fig. 6 and is only
slightly longer at L = 0.5 in Fig. 7. Although the change in
length is relatively minor, the final states of the two feeders
are radically different. In both simulations, we start with all
the induction motors (the only type of load considered here) in
the normal state, i.e., ω ∼ ω0. Time in all our simulations
discussed below is measured, according to Eq. (5), in the
units of Mω0. At t = 0, a perturbation is applied where v0

is abruptly lowered to 0.8 and held there long enough so that

all of the motors stall. Subsequently, v0 is restored to 1.0 and
the evolution of the motors and feeder variables is monitored.
The forced evolution of v0 emulates the behavior that would be
driven by a nearby fault on the transmission system supplying
the feeder and its substation.
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FIG. 7. (Color online) Voltage fault and subsequent hysteretic
recovery for L = 0.50 > Lc. The sequence of events (fault, transient,
and initial recovery) are identical to the one shown in Fig. 6, however,
the recovery is not complete. The additional loading from the motors
between z = 0.45 and 0.50 generates long-range interactions that
force v < v+

c for z > 0.22. Although v0 has been restored to 1.0,
the motors with v < v+

c do not recover to a normal state, even
though many of them do have such a stable state. In this case, the
long-range interactions are sufficiently strong to promote the local
hysteretic behavior of each motor into globally hysteretic behavior.
See Appendix B and Movie 3 of the Supplemental Material [21] for
dynamical illustration.
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Figure 6(a) shows the state of the L = 0.45 feeder im-
mediately after the fault is applied. The voltage (black line
with plus signs) starts at v(0) = 0.8 and droops only slightly.
Although v < v−

c , the inertia of the motors (although small)
keeps them temporarily at ω/ω0 ∼ 1 (blue dots) so that their
local reactive loads q (pink right-pointing triangles) remain
low as does the nonlocal reactive power flow (red curve with
circles). However, because v < v−

c the motors no longer have
an equilibrium state at ω/ω0 ∼ 1 (see dark blue solid line in
Fig. 5) and Eq. (18) forces them to relax to the stalled state
which is evident in Fig. 6(b) where ω/ω0 ∼ 0 (blue dots) all
along the feeder. All of the induction motors have now made
the transition to the upper branch of the reactive power curve
in Fig. 3 near to state a which is reflected by the increase
in q (pink right-pointing triangles) and the reactive power
flow φ (red curve with circles). Subsequent to Fig. 6(b), v0

is restored to 1.0, and a left-to-right propagating phase front
is formed [see blue dots in Fig. 6(c)] where the normal and
stalled phases are segregated with all the motors to the left of
the front in the normal state while those to the right are in the
stalled state. The motion of the finite-thickness phase front is
evident from the local real power load density [yellow squares
in Fig. 6(c)]. The peak in p (above the steady-state values
observed far to the left or right of the front) is associated with
the acceleration of the motors within the front, and as the
motors in front accelerate to ω/ω0 ∼ 1, the front advances to
the right. A left-propagating front would show a downward
peak in p. After v0 has been restored to 1.0, the reactive power
q drawn by the stalled motors along this feeder is insufficient
to create a large enough φ to lower v into the intermediate
range v−

c < v < v+
c , and the feeder completely recovers to its

initial state, i.e., the reversal of the initial perturbation restores
the feeder state. Alternatively, the implicit long-range power
flow interactions, expressed in a globally depressed voltage
profile, are insufficient to turn the local hysteresis into global
hysteresis. The dynamic version of this simulation is provided
as Movie 4 of the Supplemental Material [21].

In Fig. 7, we show the final steady state of the exact
same simulation as in Fig. 6 except that we have slightly
increased the feeder length L = 0.50. After restoration of
v0 = 1.0, phase front (blue dots) still forms and propagates
into the feeder, however, it becomes stationary at z ∼ 0.22.
The lack of a peak in the real power load density (yellow
squares) shows that there is no motor acceleration in the front,
implying that it is stationary. In this case, the reversal of
the initial perturbation does not restore the original state and
the feeder displays significant hysteresis. The added reactive
power load density q between z = 0.45 and 0.50 interacts
with the impedance over the entire length of the feeder to
create conditions (i.e., v < v+

c ) near z ∼ 0.25 that enable the
local motor hysteresis to make the feeder globally hysteretic.
The dynamic version of this simulation is provided as Movie
2 of the Supplemental Material [21]. We note that a large
section of motors to the right of the stationary phase front have
v−

c < v < v+
c and therefore also have a stable normal state (see

Figs. 2 and 5). Additional small perturbations could result in
local transitions to the normal state and subsequent global
recovery.

In-between L = 0.45 and 0.50 is a critical length Lc where
the hysteresis first appears. Feeders operating with L > Lc can

be called “dangerous” because they are operating normally
until a voltage fault occurs. Post fault, a fraction of the feeder
does not recover to normal operation and this fraction of
induction motors remains stalled, i.e., the feeder has just
undergone a FIDVR event. Over a period of one to several
minutes, the stalled motors will get disconnected by tripping
of thermal protection systems, however, this uncontrolled
recovery may also lead to overvoltages that are equally
troublesome.

C. Special features of the phase transition

Although the dynamical behavior described above is rem-
iniscent of many of the phase transitions in physics, it also
displays some very unique features, e.g., its lack of explicit
spatial locality and the instantaneous nature of the global
voltage adjustment. In the Ginzburg-Landau (GL) theory of
first-order phase transitions, we also have a potential with
two minima, however, the spatiotemporal dynamics of the
phase transition are different. In contrast to the spatiotemporal
dynamics of the current problem [as given in Eq. (18)], GL
dynamics is typically driven by a dispersion term, i.e., by
adding a term such as ∂2

z ω to the right-hand side of Eq. (18)
which effectively couples the order parameter ω at different
spatial locations. The resulting GL dynamics is a phase
transition front with a shape and speed defined by the local
balance (i.e., within the front) of the added dispersion term
against the existing nonlinearity [right-hand side of Eq. (18)]
and dynamics [left-hand side of Eq. (18)]. In contrast, the
transition front dynamics of the present problem is driven
by the globally superimposed spatial inhomogeneity of the
voltage profile v(z). During short periods of time when there
are not abrupt global changes, the voltage profile remains
relatively frozen and the motors respond locally [Eqs. (18)
and (19)] to the mismatch between their current rotational
state ω and minimum U (ω) as determined by the local voltage
v(z). These adjustments occur most rapidly in the vicinity of
the phase front where the state mismatch is the largest. The
adjustment of v(z) to the evolving motor loads is instantaneous
[Eqs. (11)–(13) and (15)–(17)], but the evolution is actually
temporally slow because the motor states are only adjusting in
the small region of the phase transition front.

Another point of comparison is the so-called Stefan prob-
lem (see [28,29] and references therein) describing a phase
transition driven by heat released at the interface between the
two phases. In its one dimensional formulation, the Stefan
problem considers two subdomains with their outer boundaries
(the boundaries away from the phase front) maintained at
different conditions, e.g., one at a constant temperature flux
and another at different temperature. Within each of the
subdomains, temperature plays the role of the order parameter,
and it obeys simple thermal diffusion (possibly with different
diffusion coefficients in the two subdomains). The sharp phase-
phase interface is subject to a boundary condition that relates
its speed to the temperature at the interface. If the interface
progresses, heat is released locally and it is then transported
via diffusion. Different versions of the problem show many
interesting behaviors. In a semi-infinite domain, self-similar
continually slowing fronts emerge. In finite domains, the
fronts may become stationary. This behavior is similar to
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what we observe in the present problem: the analogy with
the Stefan problem is the emergence of a global solution
with an inhomogeneous order parameter profile and sharp
interfacial boundary. However, the physics and interplay of the
mechanisms that create the behavior in the two problems are
significantly different: thermal diffusion versus heat release
in the Stefan problem, and local frequency transformations
versus voltage profile and rearrangement. Moreover, the latter
point also emphasizes the difference: voltage profile plays the
role of the heat injection but it does it globally along the feeder,
also changing instantaneously, i.e., voltage rearrangement
takes place with an infinite speed (electrodynamic effects are
instantaneous in our electromechanical model) while the heat
injection condition is modified gracefully in the Stefan case,
as the heat propagates along the domain with a finite speed
controlled by thermal diffusion.

V. SIMULATING AND EXPLAINING FAULT-INDUCED
DELAYED VOLTAGE RECOVERY (FIDVR)

In the previous sections, we built up an understanding of
the different types of dynamical behavior of an induction
motor-loaded distribution feeder and the different final states
that may result. In this section, we discuss in more detail
the processes specific to FIDVR. Although we discussed the
anatomy of a FIDVR event in the Introduction, we repeat it
here to motivate the following study of FIDVR dynamics. Prior
to the transmission fault, the voltages v0 at the head of all the
distribution feeders extending from the substation served by
the transmission line are 1.0, and all the feeders are in the
normal phase, i.e., all the induction motors are in the normal
state. During a transmission fault, the large fault currents in
the transmission lines locally depress the transmission voltage
which in turn depresses v0. v0 remains depressed below
1.0 until the transmission fault has cleared, i.e., automatic
protection circuit breakers have opened to deenergize the
faulted line to extinguish the ionized air supporting the fault
current and then reclosed to reenergize the transmission line.
During the fault-clearing process, one transmission line (out
of typically two or more) serving the substation is briefly

removed from service, which also tends to depress v0. It is
during this period of v0 depression that the induction motors
on the distribution feeders undergo “collapse dynamics” and
may stall. If the transmission fault is cleared normally, the
voltage at the substation returns to near normal levels after the
circuit breakers reclose. If there is significant motor stalling, v0

may not fully recover to 1.0, but we approximate the post-fault
voltage as v0 = 1.0. The induction motor-loaded feeders then
undergo “recovery dynamics” which evolve to a final steady
state.

In Sec. V A, we first discuss the collapse dynamics during
a period of the fault when v0 is depressed. This is followed by
Sec. V B where we discuss the recovery dynamics (or partial
recovery) after v0 is restored. Finally, in Sec. V C, we analyze
the two periods in combination asking the following question:
Under which conditions does a fault result in a FIDVR event?

A. Dynamics during a fault: Collapse to stalled states

If the voltage drop during the fault is large enough, i.e.,
if v0 < v−

c (see Figs. 1, 2, and 5), all the motors will rapidly
decelerate to ω/ω0 ≈ 0 and the entire feeder will eventually
end up in the stalled state. Figure 8 (and Movie 1 of the
Supplemental Material [21]) illustrates the details of this
process which are consistent with our interpretation in terms of
an “overdamped fall” down the the v < v−

c energy landscape
of Fig. 5 (dark blue solid line) governed by Eq. (18). We note
that the long-range spatial coupling forces the motors farther
down the feeder to collapse to ω/ω0 ∼ 0 faster and reinforces
the collapse after it starts. Specifically, the cumulative effect
of the induction motors loads reduces the voltage at the remote
locations of the feeder (black curve with plus signs) resulting in
a steeper local potential U (ω) (dark blue solid line in Fig. 5).
Equation (18) shows that these remote motors stall sooner,
which is borne out in Fig. 8(c) (blue dots). Additionally, as
the remote motors decelerate, their local reactive load density
q (pink right-pointing triangles) increases which increases φ

(red line with circles) further lowering v(z) (black curve with
plus signs) and increasing the slope of the local potential U (ω).
The result is an even faster collapse into a pure stalled phase.

0 0.2 0.4 0.6
0

0.5

1

1.5

2
L=0.6, time=0.001

position along the feeder z

va
ria

bl
es

ρ
φ
v
ω
p
q

(a)

0 0.2 0.4 0.6
0

0.5

1

1.5

2
L=0.6, time=0.14

position along the feeder z

va
ria

bl
es

ρ
φ
v
ω
p
q

(b)

0 0.2 0.4 0.6
0

0.5

1

1.5

2
L=0.6, time=0.32

position along the feeder z

va
ria

bl
es

ρ
φ
v
ω
p
q

(c)

0 0.2 0.4 0.6
0

0.5

1

1.5

2
L=0.6, time=1.04

position along the feeder z

va
ria

bl
es

ρ
φ
v
ω
p
q

(d)

FIG. 8. (Color online) Sequence of snapshots illustrating the collapse dynamics during a large voltage fault with v0 < v−
c and L = 0.6 > Lc.

Snapshot (a) shows the situation just after the application of the fault, although the v(z) < v−
c , the motors continue to rotate with ω/ω0 ∼ 1

because of their inertia. Snapshot (b) corresponds to a short time after the application of the fault when the motors are just starting to decelerate.
The more remote motors experience smaller v and steeper U (ω). Their faster deceleration results in smaller ω/ω0 at these remote locations.
The collapse is reinforced by an increase in q (pink right-pointing triangles) as the motors reach lower ω. Snapshot (c) is taken later in the
process: the end of the line is completely stalled, the wave of deceleration starts to propagate backwards, from the tail to the head. Snapshot (d)
shows the final phase: all the motors are stalled. Note a significant increase in the reactive power drawn by the stalled feeder. See Movie 1 of
the Supplemental Material [21].
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FIG. 9. (Color online) Collapse dynamics caused by a small voltage fault with v0 > v−
c and L = 0.6 > Lc. The collapse proceeds slower

than in Fig. 8 because the higher voltages result in shallower U (ω). Snapshot (a) corresponds to a short time after the fault as the motors have
just begun to decelerate, however, the rise in q (pink right-pointing triangles) is already reinforcing the collapse. Snapshot (b) corresponds to
later during the fault where the end of the line is stalled and the deceleration front is starting to feel the influence of the boundary condition at
z = 0. Snapshot (c) the deceleration front has become nearly stationary as the long-range interactions can no longer overcome the boundary
condition at z = 0. Snapshot (d) shows the feeder in the stabilized, partially stalled steady state. See Movie 2 of the Supplemental Material [21].

Moreover, we observe that the more severe the voltage drop
or the lower the motor rotational inertia μ, the earlier these
motors will be stalled.

Next, we consider a less severe fault where v−
c < v0 < 1.0

(see Fig. 9 and the full movie, Movie 2 of the Supplemental
Material [21]). Although v0 > v−

c , the immediate post-fault
voltage drops along the feeder to a point z0 where v(z0) < v−

c .
If the voltage profile was subsequently frozen in time, we
would expect the motors with z > z0 to behave very much
as in Fig. 8, i.e., a deceleration to ω/ω0 ∼ 0, although
somewhat slower in the previous case because the local v(z)
is slightly higher. In Fig. 9(b), we do observe this initial
behavior, however, the local reactive power loading q (pink
right-pointing triangles) again increases as the motors stall
increasing φ (red) and lowering the local v(z). Via this spatial
coupling, the feeder power flows reinforce the collapsing wave,
allowing it to propagate to z < z0.

Although the reinforcement process can be significant,
it can not overcome the boundary condition at z = 0 that
maintains v0 > v−

c . As shown in Fig. 9(d), the phase front
finally stops at location 0 < z < z0 where the local voltage
finally stabilizes at v(z) = v−

c . As this occurs, local motor
accelerations cease and the phase fronts in ω, p, and q steepen,
creating a sharp demarcation between the two pure phases of
normal and stalled states. One common and possibly universal
feature in the two scenarios discussed above is emergence of
a “collapse” transient which can be interpreted as a quasista-
tionary phase-transition front of a slowly evolving “soliton”
shape propagating with the speed and shape controlled by
instantaneous voltage at the point of the front which defines
the slope of the energy landscape U (ω) in Eq. (19) and Fig. 5.

B. Post-fault dynamics: Recovery from stalled
(or partially stalled) states

The severity of the v0 depression during the fault determines
the final state that will be reached if the collapse dynamics
are allowed to evolve to steady state. The transmission fault
may be cleared (v0 returns to 1.0) before this steady state
is reached, and we explore the dependence of the recovery
dynamics on the fault time duration in Sec. V C. For simplicity

of the present discussion, here we assume we are starting
from a post-collapse steady state. Whether the feeder starts
in a partially or fully stalled post-collapse steady state, the
perturbation of v0 returning abruptly to 1.0 has the chance of
restoring the feeder to the fully normal phase.

We have performed a range of simulations starting from
both partially and fully stalled steady states resulting from
simulation of a depressed of v0. We then restore v0 = 1.0
and monitor the recovery dynamics. One such case for a fully
stalled initial condition that fully recovers is shown in Fig. 10.
When restoring v0 = 1.0 is sufficient to drive a full recovery
(as in Fig. 10), we observe a rather rich dynamics which can
be split, roughly, into the following three stages:

(1) Figures 10(a→b): The abrupt change of v0 instanta-
neously creates a smooth voltage profile dependent upon the
instantaneous adjustment of real p and reactive q load densities
to the higher voltage, but at their motor’s stalled rotation
speed. Motors with v(z) > v+

c start to accelerate, and the phase
transition front is set up in the vicinity of the feeder head.

(2) Figures 10(c→e): The recovery front matures and
sharpens while propagating into the feeder. The narrow
recovery front is always located near to v(z) = v+

c where
the fast dynamics of motor acceleration and state transition
occurs. These fast transitions are accompanied by jumps in p

and q which act in a nonlocal manner to push the location
of v(z) = v+

c to larger z thus driving the transition front
farther into the feeder. The propagation, although driven by
the fast dynamics of motor state transitions, comprises a slow
dynamics because the state transitions occur in a phase front
that is narrow compared to the feeder length. Also, part of
the phase front is a peak in p above the steady-state values
on either side of the front. This peak is associated with the
acceleration of the motors from a stalled to a normal state. If
the feeder is long enough, the phase front appears to reach a
time-invariant shape that propagates much like a soliton.

(3) Figures 10(f→h): The slow dynamics of the recovery
approaches to within about one or two phase front widths of
the end of feeder. With fewer motors to accelerate, the voltage
adjusts faster and the front propagation speed increases until
is has consumed the entire feeder and the feeder reaches a
uniform normal phase. See Figs. 10(f)–10(h) for illustration.
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FIG. 10. (Color online) Eight snapshots of the evolution of a feeder from a steady-state, fully stalled phase to the fully normal phase
following the restoration of v0 = 1.0. (a) The final fully stalled steady state reached after simulating the feeder for a v0 = 0.8 fault voltage
depression. (b) v0 is restored to 1.0 and the motors at the head of the feeder start to accelerate. (c) A recovery front is built which starts to
propagate into the feeder. (d) The front continues to propagate at roughly constant speed and also showing a universal “solitonlike” shape.
(e) The front continues to propagate with roughly the same speed and a universal “solitonlike” shape. (f) Completion of the recovery process
where interaction with the end of the feeder accelerates the recovery front. (g) The recovery front still propagates while the shape of the front
starts to change because of interactions with the end of the feeder. (h) End of the recovery process: the entire feeder is back to the normal state.
See Movie 4 of the Supplemental Material [21] for dynamical illustration.

See Movie 4 of the Supplemental Material [21] for the full
movie of the recovery phenomenon.

Perhaps the most remarkable feature of the recovery process
is formation, at the intermediate stage, of a “soliton”: a
quasistationary shape moving with roughly constant speed
from the head to the tail. The emergence of the “soliton” is
due to the long-range interaction of the fast but local changes
in p in q in the phase front to the slower but global changes in
voltage v(z).

As we will see in the following section, the feeder does not
always fully recover simply because v0 is restored to 1.0. In
these cases, we have explored the effects of temporarily (or
permanently) raising v0 above 1.0 and found this approach
to be quite effective in restoring feeders that would have
otherwise remained stalled. However, such intelligent control
action requires reliable detection of the entry into a FIDVR
event and fast switching and/or device control to increase v0 to
a sufficient level. We postpone full analysis of such a control
to future work.

C. Dynamic transition: Will a feeder enter a FIDVR state?

Our simulation results suggest that the normal phase, the
fully stalled phase, and any of the partially stalled phases (with
the feeder split in the normal head and stalled tail) can be the
final stationary and stable points of a dynamical evolution. In
this section, we explore the properties of the final state as the
properties of the feeder (length L and motor inertia μ) and the

fault (magnitude of voltage depression �v and duration Tpertu)
are varied. Our goal is to develop an initial understanding of the
“nonequilibrium phase diagram” that controls whether or not
the feeder recovers to a fully normal phase. In the test discussed
below, we consider a feeder with L > Lc because those with
L < Lc are known to always recover to a fully normal phase
no matter the size or duration of the perturbation. In our study
of the phase diagram, we dissect the four-parameter space,
(L,μ,�v,Tpertu) in six different ways:

(1) fixing μ and Tpertu and exploring the (L,�v) subspace
(see Fig. 11);

(2) fixing μ and �v and exploring the (L,Tpertu) subspace
(see Fig. 12);

(3) fixing �v and Tpertu and exploring the (L,μ) subspace
(see Fig. 13);

(4) fixing L and μ and exploring the (Tpertu,�v) subspace
(see Fig. 14);

(5) fixing the values of L > Lc and (sufficiently large) �v

and exploring the (μ,Tpertu) subspace (see Fig. 15);
(6) fixing L and Tpertu and exploring the (μ,�v) subspace

(see Fig. 16).
Starting as usual with the feeder in a normal state with v0 =

1, we apply a v0 depression of magnitude �v and duration
Tpertu with subsequent recovery to v0 = 1 and then integrate
the dynamics until the feeder reaches a steady state. Unless
all of the motors on the feeder recover to a normal state, the
feeder final state is classified as partially stalled. In all of the
subsequent figures, the filled red circles indicate this boundary
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FIG. 11. (Color online) Phase diagram of the dynamic transition
from the normal phase to a partially stalled phase. All the points
above the curve lead to a partially stalled phase, all the points under
the curve result in a normal state. For L � Lc � 0.46, there is no
hysteresis and the system always ends in a fully running phase.

between a fully normal phase feeder and a partially stalled
feeder.

From our studies of the subspaces and the following figures,
we can make the following conclusions:

(a) From Figs. 11–13, it is apparent that the feeder becomes
less resilient to perturbations as it grows in length and that
there is an upper feeder length L∗ ≈ 0.63 that requires an
infinitesimal perturbation to force it into a partially stalled
phase. In fact, if the feeder is too long (i.e., L > L∗), the normal
phase is no longer stable [v(L) � v−

c ] and the feeder always
has a partially stalled phase. Therefore, for the remainder of
this study, feeders with Lc < L < L∗ are of interest because
feeders with L outside this range are either robust to all
perturbations or always unstable to a partially stalled phase.

FIG. 12. (Color online) Phase diagram of the dynamic transition
from the normal phase to a partially stalled phase. All the points
above the curve lead to a partially stalled phase, all the points under
the curve result in a normal phase. For L � Lc � 0.46, there is no
hysteresis and the system always ends in a fully running phase.

FIG. 13. (Color online) Phase diagram of the dynamic transition
from the normal phase to a partially stalled phase. All the points
above the curve lead to a partially stalled phase, all the points under
the curve result in a normal phase. For L � Lc � 0.46, there is no
hysteresis and the system always ends in a fully running phase.

(b) From Fig. 14, it is apparent that there is value of
�v ≈ 0.05 such that the feeder will never stall no matter how
long the perturbation is applied. At �v = 0.05, v0 = 0.95 and
the static voltage drop at these reduced voltages would make
v(L) ≈ 0.83 = v−

c . From this interpretation, this lower bound
on the �v for extremely long Tpertu can be computed from the
static power flow equations by looking for the v0 that forces
v(L) = v−

c .
(c) The two previous conditions can be computed from

static considerations. The interesting dynamics behind the
transition to a partially stalled state is then expressed in Figs. 15
and 16 which can be understood by considering the decline of
the motor rotational frequency that occurs at the far end of
the feeder during the time Tpertu of the fault. We can crudely
approximate this decline by the product of fault duration and

FIG. 14. (Color online) Phase diagram of the dynamic transition
from the normal phase to a partially stalled phase. All the points
above the curve lead to a partially stalled phase, all the points under
the curve result in a normal phase.
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FIG. 15. (Color online) Phase diagram of the dynamic transition
from the normal state to a partially stalled state. All points under the
curve lead to a partially stalled regime, all points above the curve
result in the normal final state.

the rate of frequency decline immediately after the application
of the fault, i.e., �(ω/ω0)|t=Tpertu ≈ −(2P/v0ω

2
0)(Tpertu�v/μ)

where we have used Eq. (14) and a linear expansion of Eq. (15).
It is reasonable to expect that the boundary between a feeder
that fully recovers and one that is partially stalled would be
expressed by �(ω/ω0)|t=Tpertu ≈ constant. If such a relationship
is found to hold, it would imply (Tpertu�v/μ) ≈ constant,
which within the scope of our parametric study, is in rough
agreement with the results in Figs. 15 and 16, especially if
we account for the minimum required value of �v discussed
immediately above.

The approximate analysis above provides a good qualitative
understanding of the fault and feeder parameters that lead to a
feeder with a partially stalled phase. However, more rigorous
analytical analysis of Eqs. (11)–(17) is required to put these
conclusions on firm footing.

FIG. 16. (Color online) Phase diagram of the dynamic transition
from the normal state to a partially stalled phase. All the points above
the curve lead to a partially stalled phase, all the points under the
curve result in a normal phase.

Beyond just determining the boundary between a fully nor-
mal and partially stalled feeder final states, the characteristics
of the voltage fault also determine the number of motors that
will be stalled after the fault is cleared. The more severe the
fault (in duration Tpertu or in amplitude �v), the more motors
will get stalled, up to a point. If the fault is severe enough
(�v � �v∗ or Tpertu � T ∗

pertu), the number of stalled motors
will not increase any more. For example, the maximum number
of stalled motors is reached in Fig. 17(d) for a given set of
parameters of the feeder line, and an even more severe fault
will end up in this same state after it is cleared.

On the other hand, the less severe the fault, the less the num-
ber of stalled motors, and the system can reach a continuous
set of stable partially stalled phases between the maximum
number of stalled motors and none of the motors stalled.
Figure 17 shows examples of the different phases the system
can reach, and the Movies 5–9 in the Supplemental Material
[21] illustrate the dynamics leading to these final states.

VI. DISCUSSIONS AND PATH FORWARD

In this paper, we have modeled, simulated, analyzed, and
explained how the electromechanical dynamics of induction
motor-loaded distribution feeders can lead to fault-induced
delayed voltage recovery (FIDVR), an effect observed recently
in power distribution feeders. We approached these dynamics
and the FIDVR events from the standpoint of physics:
explaining and interpreting them as an instance of a broader
class of nonlinear electromechanical phenomena in power
distribution systems. The main ideas and questions discussed
in this work can be summarized as follows:

(i) The 1 + 1 (space + time) continuous model, introduced
in Ref. [16] and developed here, offers a computationally
efficient framework for analysis of nonlinear and dynamical
phenomena in distribution feeders, and crucially, the PDE
model enables analogies with other known spatiotemporal
dynamical systems and solutions to help build intuition about
the dynamical behavior of the electrical grid’s electromechan-
ical dynamics.

(ii) By coupling a spatially local model of an individual
motor (that describes its nonlinear, bistable, and hysteretic
switching between normal and the stalled states) to a contin-
uum version of the electrical power flow equations, we are
able to explain the coexistence of a spatially extended normal
phase with a stalled phase (motors at the head portion of the
feeder are in the normal state, while motors in the tail portion
of the feeder are stalled).

(iii) The emergence of the multiple spatially extended states
is interpreted in terms of a first-order phase transition where
the distribution of the motor rotational frequency along the
feeder is the order parameter. The voltage distribution along
the feeder plays the role of an external field (degree of
freedom) that modifies an effective energy potential for motor
frequency. Different (normal, stalled, or partially stalled)
spatially extended phases are stabilized and reach a steady
state by achieving a global electromechanical balance of their
voltage and frequency distributions along the feeder.

(iv) Sufficiently strong perturbations, e.g., sudden drops or
rises in voltage at the head of the feeder, lead to transients in
the form of propagating phase fronts that separate normal-state
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(a) Tpertu = 0.221 and Δv = 0.15
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(c) Tpertu = 0.3 and Δv = 0.15
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(d) Tpertu = 0.5 and Δv = 0.15

FIG. 17. (Color online) Different final states can be achieved by manipulating the duration of the perturbation Tpertu, while its amplitude
�v remains constant. From left to right, the fault is longer and longer and the number of stalled motors increases. See five movies, Movies 5–9
in the Supplemental Material [21], illustrating the different phases that can be reached and the dynamics that lead to the phases.

motors at the head of the feeder from stalled-state motors in the
tail of the feeder. We analyzed and classified the different types
of transients and resulting steady-state phase distributions that
emerge after the transients settle for different perturbation
strengths and lengths of the feeder.

(v) We also experimented with the dynamics of mechanical
frequency and voltage phase distributions under more realistic,
but more complex, two-step perturbations (a voltage drop at
the head of the feeder followed shortly by restoration back to
its nominal value) that are expected to simulate the real world
perturbations that result in FIDVR events. The dynamics and
emerging steady states were explored for different voltage
perturbations (depth and duration of the voltage depression)
and feeder characteristics (feeder length and inertia of the
connected induction motors).

Major conclusions drawn from our numerical experiments
and analysis are as follows:

Hysteresis. The system is strongly hysteretic: reversing a
perturbation does not lead to a simple reversal of the dynamical
trajectory.

Recovery Conditions. When the feeder is short enough or
the voltage perturbation is weak enough (small enough in
amplitude or short enough duration), the feeder recovers to
a fully normal phase following a voltage perturbation, thus
avoiding a FIDVR event. Longer feeders or stronger voltage
perturbations lead to incomplete recovery and, by modifying
the three parameters beyond the recovery threshold, one ex-
plores a continuous family of different partially stalled phases.

Self-Similar Transients. When a feeder is sufficiently long,
recovery transients appear to show universal solitonlike phase
fronts with normal phase propagating into the stalled phase
with an (approximately) constant speed and time-invariant
shape.

This paper opens up a new line of research into physics-
based analysis of transients and phase transitions in distribu-
tion feeders. We plan to continue this work focusing on the
following generalizations and extensions:

(1) We modeled distribution feeders as consisting of iden-
tical induction motor loads distributed uniformly along the
feeder. In reality, the motors may be different and distributed
nonuniformly along the feeder, their distribution and parame-
ters may fluctuate in time, and they are present with many
other different types of loads. We will extend our purely
deterministic analysis to a probabilistic framework to describe
the effects of these forms of disorder and noise to resolve

questions such as what is the probability that the feeder with
a given level of disorder will recover after a perturbation of
given amplitude and duration and not enter a FIDVR state?

(2) As recently shown in Ref. [30], controls associated with
distributed generation, e.g., inverters coupled to distributed
photovoltaic (PV) generation, can also be incorporated into the
spatially continuous modeling framework (ODE framework).
The static model of [30] suggests that a feeder with a
sufficiently large penetration of the PV generation may show
a rather complicated bifurcation diagram with the emergence
of multiple low-voltage solutions that are related to the low-
voltage, stalled solutions discussed in this paper. Much like the
effects discussed here, these inverter-driven low-voltage states
are not the result of the behavior of a single inverter, but rather
result from the collective action of many inverters and their and
interaction with the nonlinearity and nonlocal behavior of the
power flow equations. To address these dynamical problems
in a more comprehensive manner, we will extend dynamical
description of this paper to the case of distributed generation,
and more generally, to the case of a feeder containing a mixed
portfolio of distributed generation and different types of loads,
including induction motors.

(3) In our first physics-based paper on the subject of elec-
tromechanical dynamical transients in distribution feeders, we
relied mainly on numerical experiments. However, the problem
formulation may allow asymptotic theoretical analysis, in par-
ticular, accurate resolution of the phase-transition boundaries,
determination of the bifurcation (spinodal) points, propagation
of solitonlike phase fronts, and analysis of the tails of the
distribution functions that account for the aforementioned
effects of noise and disorder.

(4) We have focused primarily on describing electrome-
chanical dynamics and the perturbations and transients that
lead to FIDVR events. Armed with the comprehensive under-
standing gained in the process, we are ready to attack the larger
question of distribution feeder voltage control. Specifically,
what is the least control effort needed to avoid a FIDVR event
following a given type of fault?
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APPENDIX A: METHODS

1. Dynamic simulations

To solve numerically Eqs. (11)–(16), we employ space-time
discretization and use an explicit finite differences scheme. Our
dynamical simulations are split in two steps.

(i) During the first substep, we take p and q fixed (outputs
of the previous time step) and solve the feeder-global static
Eqs. (11)–(13) for v, φ, and ρ under conditions of the fixed
voltage at the head of the line and zero fluxes at the end of
the line [Eq. (17)]. This substep instantaneously imposes a
spatially smooth and globally correlated voltage profile.

(ii) Once the global v,ρ,φ variables are fully updated, we
start updating on the second substep the local variables ω,p,q.
For ω, we use its explicit time dependence

ωt+1
j = ωt

j + �t

μ

[
pt

j

ω0
− t0

(
ωt

j

ω0

)α]
, (A1)

where �t = T/Nt is the time step (Nt is the number of steps,
and T the time of the simulation). Once ω is updated, we easily
get the updated values of p and q using Eqs. (15) and (16).

APPENDIX B: MOVIES

In this Appendix, we describe illustrative movies shown in
the Supplemental Material [21].

1. Movie 1: Large fault

This movie shows the dynamical transient following a large
drop in v0 to 0.8, i.e., v0 < v−

c . At t < 0, the line is in a
stable stationary state where all the motors in the normal state.
At t = 0+ (the first picture in the movie), v0 suddenly drops
from 1 to 0.8, and the voltage profile along the line (black
curve) immediately responds. In response to the lower v(z),
the motors’ rotational frequency (blue) decelerates everywhere
along the line at a rate dependent on the local value of the
voltage: motors closer to the head of line where the voltage is
larger decelerate at a lower rate. Motors at the far end of the line
decelerate faster and become stalled first. The stalling of these
remote motors results in an increase in their local reactive load
q (pink) and the overall reactive power flow φ (red) which
reinforces the reduction in v(z) creating a normal-to-stalled
transition front that propagates from the tail to the head of the
feeder. Eventually, the entire feeder becomes fully stalled.

2. Movie 2: Small fault

This movie shows the dynamical transient following a small
drop in v0 to 0.95, i.e., v0 > v−

c . The response of the voltage
and the mechanical frequency of the motors in the tail portion
of the line is similar to that in Movie 1: the voltage near the

feeder tail is too low and they decelerate with those nearer the
tail getting to the stalled ω/ω0 ∼ 0 state first. The transition to
the stalled state expands as it is again reinforced by the increase
in reactive loading q (pink) and reactive power flow φ (red).
However, the phase front slows down, sharpens, and eventually
stops propagating as it begins to feel the boundary condition at
z = 0 that does not allow the motors near the head of the feeder
to stall. The result is a half-stalled, mixed phase distribution
with motors in the tail part of the line stalled, while motors
near the feeder’s head in the normal state. The slowing down of
the front is related to the effect of critical slowdown typical of
first-order phase transitions as they approach a spinodal point,
i.e., as v(z) approaches v−

c .

3. Movie 3: Hysteresis

This movie shows hysteretic behavior of a feeder with
L > Lc, i.e., the application of an opposite perturbation does
not lead to a reversal of the dynamical trajectory back to the
original state. From t = 0 to 0.9, the movie is the same as
Movie 1 (movie_large_fault.pdf), i.e., v0 is reduced to 0.8 at
t = 0 and the feeder and shows a complete collapse into the
fully stalled phase. At t = 0.9, the perturbation is reversed as
v0 is restored to 1.0. The increased voltage causes the motors at
the head of the feeder accelerate and return to the normal state
and a propagating phase front is formed [more details about
this recovery front can be found in the description of Movie
4 (movie_recovery.pdf)]. The front advances towards the tail
until it reaches the point where the voltage has fallen to to v+

c

(voltage above which a stalled motor accelerates). At this point,
the phase front can proceed no further and we end up with a
partially stalled feeder. The voltage is unable to increase further
because of the nonlocal reinforcement of the voltage drop by
the stalled motors beyond the point where v = v+

c . Similarly
to what was seen in Movie 2 (and what is generally the case
when the system approaches a spinodal point), the dynamics
gets slower as the moving front approaches the critical
voltage v+

c .

4. Movie 4: Recovery

This movie is identical to Movie 3, except that the length
of the feeder line now is significantly shorter with L < Lc. In
this case, there is no hysteretic behavior after a voltage fault is
cleared: the feeder recovers completely because the shorter L

has diminished the nonlocal effects of the motors near the tail
of the feeder. The recovery process take a long time, allowing
us to distinguish different phases of the process. First, at 1 <

t < 1.3 the beginning of the line accelerates quickly; then, at
1.3 < t < 9.5, one identifies emergence of the recovery front,
which propagates down the feeder with a nearly stationary
solitonlike shape. The recovery front starts to change shape as
it approaches and interacts with the boundary condition at the
feeder tail. The absence of motors to accelerate beyond z = L

leads to fast recovery of the normal states in the vicinity of the
tail for t > 9.5.

5. Movies 5–9: Five different states

Each of the five movies shows the dynamics of the feeder
line during a voltage fault and after the fault is cleared.
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Characteristics of the feeder and faults are identical in all the
movies, except we increase Tpertu from segment to segment.
We observe that the number of motors stalled in steady state
increases with in Tpertu showing that different partially stalled
states can be reached depending on the duration of the fault.
However, we also notice existence of an upper limit to the

number of motors that can be stalled, i.e., no matter how severe
the fault, half of the line will always recover. The two last
movies illustrate this phenomenon, i.e., even though the fourth
segment has Tpertu = 0.5 and the fifth segment has Tpertu = 1,
they both result in identical steady states with the same number
of stalled motors.
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