Fluid pumping and active flexoelectricity can promote lumen nucleation in cell assemblies

Published in Proc. Natl. Acad. Sci. U.S.A., 2019

Abstract:

We discuss the physical mechanisms that promote or suppress the nucleation of a fluid-filled lumen inside a cell assembly or a tissue. We discuss lumen formation in a continuum theory of tissue material properties in which the tissue is described as a 2-fluid system to account for its permeation by the interstitial fluid, and we include fluid pumping as well as active electric effects. Considering a spherical geometry and a polarized tissue, our work shows that fluid pumping and tissue flexoelectricity play a crucial role in lumen formation. We furthermore explore the large variety of long-time states that are accessible for the cell aggregate and its lumen. Our work reveals a role of the coupling of mechanical, electrical, and hydraulic phenomena in tissue lumen formation.

Recommended citation: "Fluid pumping and active flexoelectricity can promote lumen nucleation in cell assemblies", C. Duclut, N. Sarkar, J. Prost, and F. Jülicher, Proc. Natl. Acad. Sci. U.S.A. 116, 19264 (2019). http://www.pnas.org/lookup/doi/10.1073/pnas.1908481116

Published version [pdf]
arXiv version